Feedback and Control

 Physics 219, Fall, 2002

Feedback and Control

Feedback and Control

1Introduction

Historical Examples
1
An Example of Feedback and Control: Speed Control of Motors
2
Shaft Encoding
2
Sensing motor speed using “shaft encoding”
2
Challenge: Build a LEGO shaft encoder
4
Challenge: Do exactly as I tell you
4
Motor Control
5
Exercise: Thevenin equivalent circuit for a LogoChip output
5
Transistor boost for a motor
5
Pulse Width Modulation
6
Challenge: Hot motor.
6
Challenge: Cruise Control
7
Two Way Motor Control: The H-Bridge
8
Challenge: Getting a big motor to go thisway and thatway
10

Introduction

You have already seen some examples that used “sensors” and “actuators”, mediated by the LogoChip. For example the code :

waituntil[touch?] beep

constantly monitors a (touch) sensor and uses this information to control an actuator (beeper).

Now we add a new important element: feedback. This is a term used to describe a situation where we somehow sense the current state of the system and then have some means of controlling the environment in order to “home in” on a desired goal (and stay there!)

Historical Examples

· Watt’s governor

· toilet float

· thermostat

An Example of Feedback and Control: Speed Control of Motors

Shaft Encoding

Challenge: Make a wheel turn at a constant angular velocity, independent of load.

Scheme:

[image: image1.wmf]
Sensing motor speed using “shaft encoding”

Start by using a “break beam sensor” and some LEGO parts to build a shaft encoder to sense the angular speed of a rotating wheel. We will use an Omron EE-SX1035 sensor, shown below, that consists of an infrared LED aimed an a phototransistor, with a narrow channel separating them.

[image: image2.wmf]
Wire up the break beam sensor as shown below. You will have to do some soldering!

[image: image3.wmf]
Now construct the mechanical arrangement shown below.

[image: image4.jpg]

Test your shaft encoder by view the output on an oscilloscope as you rotate the axle.

Challenge: Build a LEGO shaft encoder

Write a Logo program to measure the speed of a rotating shaft and display the result on the three digit display that you made last time.

Useful Logo Morsel

to period
; measures period for one revolution of the LEGO wheel

setn 0

resett

loop [

wait-for-edge setn n + 1

if n > 8 [output timer]

]

end

to wait-for-edge
;shaft encoder in RC0

waituntil [break?] waituntil [not break?]

end

to break?

output testbit 0 portc

end

Note that the program grabs control while making these measurements, which prevents it from doing anything else while it is measuring the motor speed. If is a problem for you there is, fortunately, a convenient solution. The LogoChip comes with a built-in counter (on pin RC0) that can be employed to “count edges” while the program is busy doing something else. Also, one often has to worry about the program is running fast enough to catch the edges. With a 20 MHz clock the LogoChip executes about 15000 Logo instructions per second, which should be fast enough for this application, even on a rapidly spinning wheel.

Challenge: Do exactly as I tell you

Using your shaft encoder, write a program that can make the motor shaft turn a specified number of revolutions.

Motor Control

Exercise: Thevenin equivalent circuit for a LogoChip output

Configure a LogoChip pin as an output and determine the Thevenin equivalent circuit for this pin.

Transistor boost for a motor

We were able to drive a little red LEGO motor (which requires about 10-15 mA of current) directly from a LogoChip output pin, but it should be obvious from the Thevenin equivalent circuit determined above that we will have trouble driving the more powerful gray LEGO motors (which require 50-100 mA) directly from a LogoChip pin. Instead, sue the following scheme to drive a gray LEGO motor.

[image: image5.wmf]
Pulse Width Modulation

The average power delivered to the motor can be varied using the technique of pulse width modulation. Pin RC2 on the LogoChip can be configured to generate a square wave with a user determined period and duty cycle (fraction of time on) using the following code:

[image: image6.wmf]
;pulse width modulation code. causes a square wave of user selected period and duty cycle to appear on pin RC2. :val determines duty cycle Values from 0 to 100 (contents of p2 register) can be used

constants

[[t2con $12][ccp1con $17][ccpr1l $15][pr2 $92]]

to pwm :val

clearbit 2 portc-ddr
;set RC2 to output

write t2con 6
; turns on timer2

write pr2 100
;sets period in units of 64*clock period

write ccp1con 12
;select PWM mode

write ccpr1l :val
;set PWM duty cycle (time on) in units of 64*clock period

end

Try using this code to vary the motor speed.
Challenge: Hot motor.

Use a thermistor as a sensor. The hotter you are, the faster the motor goes.

Challenge: Cruise Control

The cruise control on a car enables the car to travel at a constant speed, regardless of changes in the slope of the road (or, as I found out on a recent trip to Maine, the presence of a moose crossing up ahead.) Make a wheel turn at a constant angular velocity, independent of load. This is not an easy problem. See how well you can do. There is a “testing rig” made out of LEGO available in class for you to see

Here’s a sketch of one approach:

global[interval target power]

to cruise :n

init

settarget :n
; this is the target interval

pwm 100 wait 1
; brief burst to overcome starting friction

loop[

measure-interval

update-power interval

pwm power

display interval]

to measure-interval
; this procedure measures the time interval between “beam breaks” and sets the value of the variable called “interval”

....

end

to update-interval :n

; see how far off from the target the most recent interval is and use this knowledge make an adjustment in the variable called “power”

end

It’s very helpful to use your three digit display to let you know how you’re doing. Looking directly at the square wave generated by the shaft encoder with an oscilloscope is also very useful.

Two general bits of advice:

· The “feedback and control loop” will tend to work better the shorter the amount of time it takes to go through the loop. If you take to long to get through the loop the response gets too “sluggish”. (Imagine what driving would be like if in took 10 seconds between when you see the road curve and when you turn the wheel.)

· Be smart about how you adjust the power. For example, consider the amount you change power proportional to how far off from the target you are. This kind of “proportional control” helps avoid “overshooting” the target.

Two Way Motor Control: The H-Bridge

As you’ve seen before, a dc motor such as a LEGO motor will spin thisway or thatway, depending on the polarity of the applied voltage. This was easy to accomplish by connecting the motor to two output pins on the LogoChip. But suppose we want to be able to vary both the motor’s speed and direction. It’s not so easy to do this, especially if we also want to use a motor that requires more current than the LogoChip can directly provide.

Fortunately there is a clever solution to this problem known as the H–Bridge. This consists of four field effect transistor (FET) switches that are arranged in two pairs as shown below. Each pair looks the output stage of a LogoChip pin. One of the pair will always be “on” while the other is “off” so that the voltage at the midpoint is either at
[image: image7.wmf] or at ground, depending on the voltage applied to the “gate” of these FETs. The motor is connected between the midpoints of the transistor pairs, forming the horizontal segment of the letter “H”. By choosing different combinations of input voltages applied to the gates of the transistors, the current can be made to flow in either direction through the motor. The FET gate inputs draw very little current, so they can be easily controlled by the LogoChip. If one chooses FETs designed to carry lots of currents then this scheme can be used to drive very hefty motors.

[image: image8.wmf]
The speed of the motor will depend on the (time average) voltage. Using the H-bridge drivers shown above with a pulse width modulation scheme, motors can be turned on and off and their rotation sense can be determined. In many projects you may want to use a LD293.motor driver chip. These. integrated circuits contain two built-in H-bridges, and also built-in diodes to dissipate the “back emfs” that develop when switching inductive loads such as motors. (See page 52 of Horowitz and Hill.) The operation of the LD293 is shown below:

LD 293 Truth Table:

	ENABLE
	IN A
	IN B
	OUT A
	OUT B
	MOTOR STATE

	L
	X
	X
	X
	X
	coast

	H
	L
	L
	L
	L
	brake

	H
	L
	H
	L
	H
	on cw

	H
	H
	L
	H
	L
	on ccw

	H
	H
	H
	H
	H
	brake

L293D pinout diagram

[image: image9.wmf]
Challenge: Getting a big motor to go thisway and thatway

Wire up a L293D motor driver and interface it to the LogoChip. Write a few simple procedures to turn the motor on thisway and thatway, to turn it off and to make it brake. Can you make it slow down by using pulse width modulation?

Page 1
Last Modified on 10/11/02 1:08 PM
Page 10
Last Modified on 10/11/02 1:08 PM

_1095224001.unknown

