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A set of killer whale sounds from Marineland were recently classified automatically �Brown et al.,
J. Acoust. Soc. Am. 119, EL34–EL40 �2006�� into call types using dynamic time warping �DTW�,
multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual
classification. Here the effectiveness of four DTW algorithms on a larger and much more
challenging set of calls by Northern Resident whales will be examined, with each call consisting of
two independently modulated pitch contours and having considerable overlap in contours for several
of the perceptual call types. Classification results are given for each of the four algorithms for the
low frequency contour �LFC�, the high frequency contour �HFC�, their derivatives, and weighted
sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its
derivative. The best agreement with the perceptual classification was 90% attained by the
Sakoe-Chiba algorithm for the low frequency contours alone. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2747198�

PACS number�s�: 43.80.Ka �WWA� Pages: 1201–1207
I. INTRODUCTION

Marine mammals produce a wide range of vocalizations,
and an improved ability to classify recorded sounds could aid
in species identification as well as in tracking movements of
animal groups. For the most part, the sounds produced by
killer whales have been classified by humans into groups
called “call types” from listening to the calls and observing
their spectra. For killer whale sounds classification by eye
and ear is consistent, and this type of classification has been
useful to reveal group-specific acoustic repertoires and
matching vocal exchanges �Yurk et al. 2002�. It would, none-
theless, be useful to replace human classification with an
automatic technique because of the large amounts of data to
be classified, and the fact that automatic methods can be
fully replicated in subsequent studies.

In a previous study we examined a group of captive
killer whale sounds recorded in Marineland in the French
Antilles and consisting of nine call types with at least five
examples in each �Brown et al. 2006�. We found that dy-
namic time warping �DTW� gives an accurate measure of the
dissimilarity of calls and were able to classify this set auto-
matically with near-perfect accuracy. Here we extend this
work with a larger group of whale sounds recorded on the
open sea and examine the effectiveness of four different
DTW algorithms. This set of sounds consists of biphonic
�two simultaneous, independently modulated� calls of north-
ern resident whales and contains over 100 calls previously
classified perceptually into seven call types. This is the first
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automatic classification study using frequency contours of
biphonic calls as well as the first full-length article on clas-
sification of marine mammal calls using DTW. Preliminary
results were reported by Brown and Miller �2006a, b�.

II. BACKGROUND

A. Killer whale vocalizations

Killer whales produce three forms of vocalizations:
clicks, whistles, and pulsed calls. Clicks consist of an im-
pulse train �series of broadband pulses�; whistles consist, for
the most part, of a single sinusoid with varying frequency;
and pulsed calls are more complex sounds with many har-
monics. Among these pulsed calls are a number of highly
stereotyped �repeated and recognizable� calls, which are
thought to be learned within the pod or living group. Reper-
toires of these stereotyped calls are pod specific, and the
time-frequency contours of shared stereotyped calls are also
group specific from matrilineal lines �group with same
mother� to larger pods �consisting of several matrilineal
lines� to clans �larger groups sharing calls�.

B. Fundamental frequency tracking and perceptual
classification

One of the remarkable features of some northern resi-
dent killer whale pulsed calls is that they contain two over-
lapping but independently modulated contours or “voices” as
shown in Fig. 1. Biphonation, as this is called, is common in
birds but has been described for few marine mammal sounds
�Tyson, 2006; Tyson et al., 2006�. One of the challenges of
analyzing these complex sounds is to determine the funda-

mental frequency or to “pitch-track” these two components
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from the same sound. See the example in Fig. 1 where the
upper and lower frequency components are superposed on
the spectrum.

Pitch tracking has had a long and abundant history in the
speech literature �Hess, 1983�. Some of these methods have
proven successful for determining the repetition rate, or fun-
damental frequency, for pulsed killer whale sounds and have
been described in Brown �1992�, Wang and Seneff �2000�,
and Brown et al. �2004�. The pitch contours of our northern
resident group are arranged by perceptually determined call
types in Fig. 2 for the low frequency contours and in Fig. 3
for the high frequency contours. As can be seen in these
figures, the shapes of the contours within each group are
similar though the lengths of the calls differ. The call types
are graphed separately because of the considerable overlap in
frequency range of several of the groups; this foreshadows
difficulty for automatic classification.

C. Dynamic time warping

For automatic classification, a technique for quantita-
tively comparing curves of similar shape but different
lengths is required. Dynamic time warping �DTW� is ideally
suited to this task. It was used widely in the early days of
speech recognition, and the different algorithms used by the
speech community are described and evaluated in an excel-
lent paper by Myers et al. �1980�. See also Rabiner and
Juang �1993�. More recently DTW has been used for “query
by humming” searches in musical information retrieval �Hu
et al., 2003�.

For marine mammal sounds DTW was first used for the
classification of 15 dolphin signature whistles into five
groups by Buck and Tyack �1993�. In the past year it has
been applied to pulsed killer whale sounds by Deecke and
Janik �2006� on a set of 20 calls in six categories, as well as
our �Brown et al., 2006� Marineland classification of 57 calls
into nine call types. In the smaller sets of 15 and 20 calls, the

FIG. 1. Spectrogram showing pitch contours of the low frequency and high
frequency sources in a killer whale pulsed call. Note there is noise before
and after the onset of the calls.
contours within call types were virtually identical. While
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there was much more contour variation in the 57-call data
set, these calls still separated sufficiently in absolute fre-
quency to be identifiable on the same graph; this is not the
case for our current, much larger set of calls.

We have chosen four very different DTW algorithms,
including the three used previously in the marine mammal
studies mentioned above, for our current classification to de-
termine their relative performance on this extremely chal-
lenging set of calls.

III. CALCULATIONS

A. Dynamic time warping „DTW… and contour
dissimilarity

As an example of a DTW calculation, we consider two
calls of different lengths, both from call type n32. By con-
vention the shorter call is referred to as the query Q�i� and is
aligned along a vertical axis, and the longer call is the target
T�j� aligned horizontally as shown in Fig. 4. For all algo-
rithms the first step is to construct a difference matrix where
each element D�i , j� is equal to the difference in correspond-
ing elements,

D�i, j� = �Q�i� − T�j�� . �1�

From this difference matrix, a cost matrix M is con-
structed that keeps a running tab on the dissimilarities of the

FIG. 2. �Color online� Pitch contours of the low frequency calls of the
northern resident group of killer whales plotted in the perceptually desig-
nated call types. The calls are plotted separately since there is too much
overlap to distinguish them if plotted on the same graph.
elements making up the curves while adding up these costs
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to give a final number called the “dissimilarity” or distance
between the query and target. We examine the cost matrices
of our four algorithms below.

1. Ellis method

This is the simplest and most straightforward algorithm.1

Each element of the cost matrix is obtained by adding the

FIG. 3. �Color online� Pitch contours of the high frequency calls of the
northern resident group of killer whales plotted in perceptually designated
call types. They are plotted separately due to overlap as in Fig. 2.

FIG. 4. Cost matrix with minimum cost path in white and input contour
shapes above and to the right. The shorter sound is called the query and the

longer sound the target.
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difference element for that position �obtained from Eq. �1��
to the minimum of the three previously determined elements
of the cost matrix, which are �1� diagonal, �2� above, and �3�
to the left:

M�i, j� = min�M�i − 1, j − 1�
M�i − 1, j�
M�i, j − 1�

� + D�i, j� . �2�

2. Sakoe-Chiba method

The method of Sakoe and Chiba �1978� in an altered
form was used by Deecke and Janik �2006�. It is more com-
plex and compares the weighted sum of difference elements
from two columns and two rows distant with the weighted
diagonal as shown in the equation below. We have chosen
the form indicated by Sakoe and Chiba to give the best re-
sults:

M�i, j� = min�M�i − 1, j − 1� + 2 · D�i, j�
M�i − 2, j − 1� + 2 · D�i − 1, j� + D�i, j�
M�i − 1, j − 2� + 2 · D�i, j − 1� + D�i, j�

� .

�3�

3. Itakura method

This method �Itakura, 1975� was used by Buck and Ty-
ack �1993�:

M�i, j� = min�M�i − 2, j − 1�
M�i − 1, j − 1�
M�i, j − 1�

� + D�i, j� . �4�

It differs from other algorithms in that there is a con-
straint that two elements cannot be chosen sequentially from
the same row, i.e., if M�i , j−1� is the minimum element, then
it is not an option for the next element of the cost matrix in
that row.

4. Chai-Vercoe method

This is the method often used in music information re-
trieval �Chai and Vercoe, 2003; Foote, 2000; Kruskal and
Sankoff, 1983� and was extremely successful in classifying
our killer whale calls from Marineland. The cost matrix is
generated with

M�i, j� = min�M�i − 1, j� + a ,

M�i, j − 1� + b ,

M�i − 1, j − 1� + D�i, j�
� . �5�

Here each element of the cost matrix can come from �1�
the cost element directly above and adding a, the cost of an
insertion; �2� the cost element to the left and adding b, the
cost of an deletion; or �3� the previous element along the
diagonal with the addition of the difference in corresponding

elements. Since a deletion means a difference in lengths,
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which we do not want to penalize, b was chosen to be 0. The
principal disadvantage of this method is that it contains the
adjustable parameter “a.”

For each of these four methods a running tab is kept of
which choice is made for each element. Thus the minimum
path can be retraced, and an example is shown in Fig. 4. The
final “dissimilarity” is the number M�imax, jmax� normalized
by dividing by the length of the query; this is a measure of
the difference in the two contours. Identical signals will have
a diagonal best path and a cost of zero, while larger differ-
ences will increase the matching cost. For classification these
costs are a means of grouping �clustering� the calls with the
smallest dissimilarities.

5. Dissimilarity matrices

Dissimilarity matrices were obtained by calculating a
cost matrix for each pair of the low frequency calls shown in
Fig. 2 to give a matrix with elements equal to these dissimi-
larities. The frequencies in Hz, which are graphed, were
transformed for the cost matrix calculation using

fcents = 12 log2�f/f ref� , �6�

where f ref=440 Hz as described in Brown et al. �2006�. This
unit means that we are comparing ratios of frequencies rather
than absolute values, and, for example, a difference of
100 Hz and 200 Hz will be weighted the same as a differ-
ence of 400 Hz and 800 Hz. An identical procedure was car-
ried out for obtaining a dissimilarity matrix for the high fre-
quency calls shown in Fig. 3 as well as the derivatives �point
to point differences of each curve in Figs. 2 and 3� for both
groups. The derivatives are a measure of the shape alone of
the curves and are independent of absolute frequency.

An example of a dissimilarity matrix is given in Fig. 5.
Each element of this matrix represents the result of calculat-
ing a cost matrix for a particular pair of calls. Since there
were a total of 105 calls, each dissimilarity matrix represents
the results of calculating a cost matrix for 105�104� /2 or

FIG. 5. Dissimilarity matrix of the LFC using the method of Sakoe and
Chiba. Each point represents the dissimilarity of �or distance between� a pair
of sounds.
5460 pairs of calls. The matrix is not truly symmetric but
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comparison of the shorter �query� to the longer �target� sound
has been found to be a more accurate measure of the differ-
ence; therefore the elements below the diagonal were ob-
tained by transposition.

The example of Fig. 5 was calculated for the low fre-
quency calls using the Sakoe-Chiba method. Here the dark
elements indicate a small distance and the lighter ones a
larger distance. The perceptual groupings of Fig. 2 are indi-
cated with bold horizontal and vertical lines. Perfect agree-
ment with the perceptual results would give black blocks
along the diagonal corresponding to small distances for the
perceptual groupings and white elsewhere indicating large
distances. The third group �n32� is closest to this ideal with
white for all other groups except the fourth �n33�. The last
three groups are mixed with each other as well as with the
second group, and this was typical of all calculations.

B. Classification

For each method the distances given by the dissimilarity
matrices were transformed into a Euclidean-like space using
multi-dimensional scaling. They were then clustered using a
kmeans algorithm �Brown et al., 2006� from Matlab into
seven call types to compare to the perceptual classification.
An example classification corresponding to the dissimilarity
matrix of Fig. 5 for the Sakoe-Chiba method is given in Fig.
6. There are ten errors in this example all involving clusters
2, 5, 6, and 7, as could be predicted from the dissimilarity
matrix.

IV. RESULTS AND DISCUSSION

Classification results for each of the four algorithms
used to classify the low frequency component �LFC�, the
high frequency component �HFC�, and their derivatives are
given numerically in Table I as well as in the corresponding
bar graphs of Figs. 7–9, where they are more easily visual-

FIG. 6. �Color online� Clustering results for the difference matrix of Fig. 5.
ized. In Table I the column labeled “Double group” indicates
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TABLE I. Summary of results. The upper third of the table gives the percent agreement with the perceptual
classification of the LFC and HFC contours alone in columns 1 and 3 and for their sum in column 6. The middle
third of the table does the same for the LFC and its derivative. The lower third does the same for the HFC and
its derivative.

Summary of results

Low frequency and high frequency components

Low
freq

Double
group

High
freq

Double
group Ratio Sum

Double
group

Ellis 77 70 1.6 80
Sakoe-
Chiba

90 69 1.6 90

Itakura 86 68 1 1.6 81
Chai-
Vercoe

83 1 79 1 1.8 90 1

Low frequency component and its derivative

Low
freq

Double
group

Low freq
derivative

Double
group

Ratio Sum Double
group

Ellis 77 81 1 12 77
Sakoe-
Chiba

90 82 1 12 88

Itakura 86 70 1 11 73
Chai-
Vercoe

83 1 86 1 20 86 1

High frequency component and its derivative

High
freq

High freq
derivative

Double
group

Ratio Sum Double
group

Ellis 70 76 14 77
Sakoe-
Chiba

69 76 16 86

Itakura 68 1 57 1 14 73
Chai-
Vercoe

79 1 77 1 26 80 1
FIG. 7. Percent agreement with perceptual results for each method of cal-

culating for the LFC, HFC, and their sum.
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FIG. 8. Percent agreement with perceptual results for each method of cal-

culating for the LFC, LFC derivative, and their sum.
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that two of the perceptual call types were classified into the
same cluster, so these results are not as good as the stated
percentage would indicate.

A. Low frequency and high frequency contours

In the upper third of Table I �cf. Fig. 7�, the agreement
with perceptual results is greater for the low frequency com-
ponent �LFC in column 1� than the high frequency compo-
nent �HFC in column 3�. Sakoe-Chiba does best on the LFC
at 90% with Chai-Vercoe best for the HFC. To determine the
effect of the LFC and HFC distances combined, their dis-
similarity matrices were added with weighting corresponding
to the ratio of the means �column 5�, and a new classification
calculation was carried out for each algorithm. The results
are in column 6 with significant improvement for the Chai-
Vercoe method.

B. Low and high frequency contour derivatives

Classification results for the LFC and HFC derivatives
are found in column 3 of the remainder of Table I as well as
in Figs. 8 and 9. With one exception these results are all over
70%, which is quite remarkable for these very irregular
curves.

C. Sum of contours and derivatives

Results for the Marineland group �Brown et al., 2006�
were improved from 88% to 98% agreement with perceptual
results by adding the dissimilarity matrix for the LFC deriva-
tive to the matrix for LFC alone weighted with the means of
the two matrices. Results of the analogous calculation for
this set of calls are given in column 6. Here they yield a
marginal improvement for the Chai-Vercoe method. For the
HFC summed with the HFC derivative calculation, Sakoe-
Chiba was improved by 10% and 17%, respectively, over the

FIG. 9. Percent agreement with perceptual results for each method of cal-
culating for the HFC, HFC derivative, and their sum.
HFC derivative and HFC alone results to 86%.
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D. Summary

With the exception of the Itakura method on the HFC
derivatives, the results of all algorithms were in agreement
with the perceptual classification by near 70% or greater and
could thus be considered successful given the difficulties of
this data set. The shapes of the curves show variation within
each perceptual call type, and there is considerable similarity
among groups 2, 5, 6, and 7 �call types n2, n4, n5, and n9� in
frequency range as well as shape. The best result was 90%
using Sakoe-Chiba for the low frequency contours, which is
truly outstanding.

It should be recalled that the perceptual classification
was made by listening to the calls while observing their
spectra, rather than by an examination of the contour alone.
These perceptual decisions were probably influenced by
spectral content �not present in the contours�. Also DTW is
most effective for curves differing in length by less than a
factor of 2; in this set there was variation of lengths as great
as a factor of 3. Thus, it is in fact remarkable that the com-
puter classification reached 90% agreement.

V. CONCLUSIONS

These results with a maximum of 90% agreement with
the perceptual data were not as impressive as the 98% re-
ported previously on the Marineland set. However, this is
easily understood in comparing Fig. 2 to the corresponding
figure in Brown et al. �2006�. The Marineland calls separated
nicely in frequency and could be viewed on the same graph.
In a similar graph �not included� for these northern resident
calls, four of the call types were intermingled and unsepa-
rable visually. In other DTW studies on marine mammals
�Buck and Tyack, 1993; Deeke and Janik, 2006� there were
few contours, and they were virtually identical within
groups. The current data set thus represented a severe test for
DTW, and the 70%–90% agreement with perceptual classifi-
cation is excellent.

Of the algorithms examined and combinations of dis-
similarities, Sakoe-Chiba performed best on the LFC. While
slightly more complicated than the other algorithms, it has
the advantage of having no adjustable parameters. There is
also a positive side to the fact that results were best for the
low frequency component alone in that preprocessing re-
duces to pitch tracking a single component.

Dynamic time warping has proven to be an excellent
technique for the automatic classification of killer whale call
types. One of its most rewarding applications would be the
ability to monitor the movements and habitat preferences of
killer whales just by tracking sounds heard at remote moni-
toring stations. This will only be possible with systems de-
veloped to automatically process and identify calls heard at
those locations so that the group producing them can be
identified remotely.
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1We are calling this the Ellis method as the code was obtained from Dan
Ellis’s website http://labrosa.ee.columbia.edu/matlab/dtw/.
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