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In a recent article [J. C. Brown, "Calculation of a Constant Q Spectral Transform," J. Acoust. 
Soc. Am. 89, 425-434 ( 1991 ) ], the calculation of a constant Q spectral transform that gives a 
constant pattern in the log frequency domain for sounds with harmonic frequency components 
has been described. This property has been utilized in calculating the cross-correlation function 
of spectra of sounds produced by musical instruments with the ideal pattern, which consists of 
one's at the positions of harmonic frequency components. Therefore, the position of the best 
approximation to the "ideal" pattern for the spectra produced by these instruments has been 
determined, and in so doing the fundamental frequency for that sound has been obtained. 
Results are presented for scales produced by the piano, flute, and violin as well as for arpeggios 
played by a wide variety of instruments. 

PACS numbers: 43.60.Gk, 43.75.Yy 

INTRODUCTION 

Previous work in the field of musical fundamental fre- 

quency tracking was reviewed recently in an article describ- 
ing a frequency tracker operating in the time domain 
(Brown, 1991 ). Since this work is based on a calculation in 
the frequency domain, we will limit our background discus- 
sion to studies that have been done on musical systems in the 
frequency domain except where directly relevant to this 
work. 

Most of the efforts at musical frequency tracking have 
taken place in the frequency domain (Terhardt, 1979; Ter- 
hardtetaL, 1982; Amuedo, 1985; Chafe and Jaffe, 1986) and 
have used a method of attack similar to that of the Schroeder 

(1968) histogram method. After the calculation of a fast 
Fourier transform, a hypothesis is asserted for each frequen- 
cy component of all possible fundamental frequencies for 
which it could be a harmonic; i.e., each frequency compo- 
nent is divided by integers and the results are entered in a 
table. The entries are weighted, and a decision is made based 
on criteria involving the number of components and their 
weights. The frequency is chosen which most closely meets 
previously determined criteria. 

A similar frequency tracker (Piszczalski and Galler, 
1979) took ratios of pairs of components to form their hy- 
potheses for the fundamental and then proceeded as above. 
Duifhuis et al. (1982) studied speech segments using a 
method which most closely approaches that of this article. 
Following an FFT, they kept a maximum of six peaks and 
then used a "harmonic sieve" to determine which of these 

peaks best fit the logarithmic spacing obtained with harmon- 
ic frequency components. This method was later refined by 
Scheffcrs (1983). 

'•Thc nomenclature "fundamental frequency tracker" or "frequency 
tracker" is used rather than "pitch tracker" because the editor wishes to 
observe the psychoacoustical distinction between pitch as a perceived 
quantity and frequency as a physical quantity. 

I. BACKGROUND 

In a recent article (Brown, 1991 ), we described a calcu- 
lation that serves as the basis for the frequency tracker which 
will be discussed. In this calculation, a spectral transform 
equivalent to a 1/24th octave filterbank is carried out every 
15 ms on the digitized sound from a musical instrument. The 
frequency components thus have logarithmic spacing. As 
described (see Fig. I in Brown, 1991 ), for a sound with har- 
monic frequency components, these Fourier components 
have a spacing in the log frequency domain which is indepen- 
dent of the fundamental frequency. For example, the spacing 
between the fundamental and the second harmonic is 

log(2), that between the second and third components is 
1og(3/2), and so on. 

Since this pattern is constant for harmonic frequency 
components, the "pattern" with l's at the appropriate spac- 
ings can be convolved (or cross correlated ) with the spectral 
transform, and a maximum should occur at the position of 
the fundamental. Note that this method accomplishes the 
same purpose as the histogram method; the values of the 
cross-correlation function being similar to the the sums of 
table entries. Here, however, the values correspond to all 
possible harmonic components. 

For example as the convolution is computed, each com- 
ponent of the harmonic pattern will fall on each component 
of the analyzed sound. This "asserts" the appropriate funda- 
mental as a hypothesis (weighted with the value of the cross- 
correlation function at that point) but it is simultaneously 
asserting that same fundamental for each of the components 
of the sound which are in the appropriate position. So rather 
than dividing, choosing a weighting system, and keeping en- 
tries in a table, we obtain one number for each frequency 
corresponding to the sum of all the frequency components of 
the sound that are in the correct position to be multiples of 
that frequency (harmonics of that fundamental). Thus in a 
very elegant and complete way we are obtaining the results 
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that the previous researchers approached with the histogram 
method. There is a computational advantage as well in that 
we simply add the components with the appropriate spacing. 

Finally this frequency tracker solves the problem of the 
"missing fundamental" in much the same manner as that 
hypothesized for humans. It is essentially comparing the 
harmonics present to a template and finding the best match. 
This is consistent with the pattern matching theory (Gerson 
and Goldstein, 1978) of human pitch perception. 

II. RESULTS 

Before presenting the results on musical instruments, it 
is instructive to consider this method with single frames. In 
general, the calculation was carried out on 15 ms of analyzed 
sound. In Fig. 1, the signal analyzed consisted of a sound 
generated in software with 20 harmonics of equal amplitude. 
The lower graph of Fig. 1 is the spectral transform of this 
signal in the log frequency domain. The pattern that is con- 
volved with this transform consist of l's with the same spac- 
ing as that of these peaks since this signal was synthesized to 
have the ideal shape. The cross-correlation function is given 
in the top of Fig. 1. Clearly the largest peak of the cross 
correlation is at the position of the fundamental for this ide- 
alized spectrum, and it can be chosen easily by a peak picker. 

It should also be noted, however, that the cross-correla- 
tion function has peaks at the position of one-half of and two 
times the fundamental. These peaks give rise to octave errors 
(a problem for all frequency trackers). With our method, 
the source of the problem is that the even peaks of the pattern 
line up with the spectrum for the frequency an octave below 
that of the fundamental so, if enough peaks are included in 
the pattern, the cross-correlation function will have the same 
value at this position as at that of the true fundamental. For 
the frequency an octave over that of the fundamental (the 
second harmonic), the peaks of the pattern are aligned with 
the even peaks of the spectrum again giving rise to a large 
value of the cross-correlation function. The octave errors 

thus produced are the chief source of error for our frequency 
tracker. In a later section, we will describe a means of elimi- 
nating the error occurring on the second harmonic. 

An example of the cross-correlation function for a digi• 
tized musical sound is given in Fig. 2 for the sound produced 
by a violin. This is a particularly favorable example as the 

spectrum includes a strong fundamental, and the cross cor- 
relation exhibits an even stronger and more unambiguous 
peak than for the synthesized data which were represented in 
Fig. 1. We will represent some of the calculations for the 
violin that are the most difficult to interpret after the general 
presentation of our results and the discussion of adjustable 
parameters fi3r this frequency tracker. 

With any pattern matching method, the cross correla- 
tion establishes most unambiguously the position of the pat- 
tern that is sought the closer in shape it is to the known 
"ideal" pattern. (Duda and Hart, 1973 ) Thus the number of 
components in the ideal pattern should match the average 
number of non zero Fourier components for a particular 
instrument. The effect of varying these components in the 
pattern is thus an adjustable parameter to be optimized for 
each instrument. 

The graphs of Figs. 3-5 demonstrate the frequency 
tracking resnlts on sounds produced by a flute, piano, and 
violin as examples of wind, keyboard, and string instru- 
ments, respectively. We have plotted midinote versus time 
where middle C (C4) is represented by midinote 60, and 
each semitone corresponds to a value of one midinote higher 
(or lower). Graphs of the spectra that were used for these 
calculations are found in Brown ( 1991 ). Each point in these 
graphs represents the peak of a cross-correlation calculation 
on an analysis frame similar to that of Fig. 2 corresponding 
to approximately 15 ms of sound. Each instrument is playing 
a scale so that perfect results would consist of a sequential set 
of horizontal lines rising by one or two midinotes corre- 
sponding to a half or a whole step in the scale. Thus errors 
made by the frequency tracker are easily distinguished as 
points off the appropriate horizontal line. 

The spectrum of the sound produced by the flute con- 
sists of a fundamental and a few upper harmonics that di- 
minish in amplitude in a regular fashion. In Fig. 3, we show 
the effect of varying the number of components in the har- 
monic pattern from three components to five where the opti- 
mum pattern consists of four harmonics. The flute is playing 
a C major scale from C4 to E6. Errors occur on note changes 
when there is more than one note present. Most of the errors 
for the flute occur on the lowest notes when there are too few 

components in the pattern (lowest curve). This is due to 
little energy in the lower harmonics for these notes. 

CROSS CORRELATION FUNCTION 

SPECTRUM 

1395 

FIG. 1. Spectrum versus log frequeucy 
for a sound consisting of 20 harmonics of 
equal amplitude (below) and the cross- 
correlation function of this spectrum 
with a function consisting of l's with the 
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J. Acoust. Soc. Am., Vol. 92, No. 3, September 1992 Judith C. Brown: Musical fundamental frequency tracking 1395 



SS CORRELATION FUNCTION 
SPECTRUM 

I I .I I 

FREQUENCY(HZ} • 

FIG. 2. Spectrum versus log frequency for the 
note C4 produced by a violin (below) and cross- 
correlation function (above) of this spectrum 
with the same function as that described for Fig. 
1. 

For the higher notes the errors on note changes are al- 
most all low by an octave. These errors occur because, when 
the pattern has its lowest component at the position of an 
octave below the fundamental of the sound, the even compo- 
nents of the pattern pick up all the harmonics of the sound. 
The odd components of the pattern are in a position to pick 
up any sound from the previous note's decay, giving an ad- 
vantage over the pattern at the position of the fundamental. 
Only by limiting the number of components in the pattern to 
match those of the particular instrument studied can this 
error be eliminated. In practice this is not a serious problem, 

as none of these errors occurred for more than one frame; 
they could be easily eliminated by having two frames agree. 

The results for a piano sound are found in Fig. 4 where 
the qualitative behavior is similar to that of the flute, and the 
optimum number of components in the cross-correlation 
pattern is the same. The total number of errors for the piano, 
with the optimum number of components, is three as op- 
posed to six for the flute. 

Preliminary fundamental frequency tracking results on 
the violin were reported at the Syracuse meeting (Brown, 
1989) of the Acoustical Society of America. The spectrum of 

z 

• o 

TIME 

FIG. 3. Fundamental frequency tracking results for a flute scale from C,4 to E6 using cross correlation with a pattern consisting of three components (below), 
four components (center), and five components (above). 

1396 J. Acoust. Soc. Am., Vol. 92, No. 3, September 1992 Judith C. Brown: Musical fundamental frequency tracking 1396 



pq 

............... 

TIME 

FIG. 4. Fundamental frequency tracking results for a piano scale from G3 to G5 using cross correlation with a pattern consisting of three components 
(below), four components (center), and five components (above}. 

of the violin is quite different from those of the flute and 
piano. There is a strong formant in the region of 3000 Hz, 
which gives rise to extremely strong upper harmonics. In 
Fig. 5, the frequency tracking results are found for this violin 
with 6 to 20 components in the cross-correlation pattern. 
The optimum number of components is 11, but the results 
are not terribly sensitive to this parameter as long as it is 
reasonably close to the optimum. 

To clarify the source of errors with this method, we have 
chosen four frames for the violin from the region of the note 
transition from E5 to F$5 (Fig. 6). All note transitions are 
difficult for a frequency tracker since there are two notes 
present. For each of these frames we have graphed the spec- 
trum, the cross-correlation function, and the peak chosen to 
represent the fundamental frequency. Time increases from 
the bottom three graphs to the top three. The first two 
frames (lowest six graphs) are in error by an octave below 
the correct fundamental. 

We have indicated the harmonics for F#5 with small 
arrows. Harmonics three, four, and five fall into the formant 
region and are thus strongly amplified. Since positions on the 
pattern are closely spaced for the higher harmonics, when 

the pattern lines up on the (winning) frequency an octave 
below the frequency of E5, contributions from these higher 
harmonics from F$5 are sufficient to make this the winning 
note. This happens again for the next frame. In the third and 
fourth frames (top six graphs) the higher harmonics of E5 
have essentially died out, and F•5 wins as it should. 

Aside from the number of components in the cross-cor- 
relation pattern, the other adjustable parameter is the tuning 
of the center frequencies for the bins for the calculation of 
the spectrum. In Fig. 7, we have varied the tuning over a 
semitone in steps of 1% of the center frequency for the violin. 
For example, the curve marked 0.97 has center frequencies 
3% lower than those in the curve marked 1.00. Note that the 

frequency tracker is very sensitive to this parameter with an 
obvious deterioriation in performance with even the small 
change to 0.99 from the optimum 1.00. It is suggested that 
this tuning analysis be carried out for each A to D converter 
used, since frequency shifts can occur during the process of 
sampling. 

As a final test for this frequency tracker we have applied 
it to a "musical obstacle course" consisting of four ascending 
notes played very slowly (about I s per note) by each of a 
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FIG. 5. Fundamental frequency tracking results for a violin scale from 03 to G5 using cross correlation with patterns consisting of components with the 
number varying from 6 to 20. The number of components is indicated on the curve. 

violin, viola, cello, clarinet, alto sax, tenor sax, trumpet, 
trombone, and French horn. The cross-correlation pattern 
cannot be optimized for each instrument as was done pre- 
viously so poorer results might be expected. A compromise 

of eight harmonics in the pattern was chosen, and a graph of 
the frequency tracking results is found in Fig. 8. The notes in 
the soundfile were spliced together so there is silence for a 
few frames between notes; thus these points off the horizon- 
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FIG. 6. Four frames for the violin transition from E5 to F•5. For each is graphed the spectrum versus log frequency, the cross-correlation function, and the 
peak chosen as the fundamental frequency. 

tal lines between notes do not represent errors. 
We have also analyzed these sounds with a frequency 

tracker using the method of narrowed inverted autocorrela- 
tion (Brown and Puckette, 1987; Brown etaL, 1989; Brown, 
1991 ) in order to compare these two methods (Fig. 8). The 
autocorrelation results are found in Fig. 9. Figures 8 and 9 
represent on the order of 2300 frames or discrete frequency 
tracking events and had to be sampled to be compressed on 
to a single graph. They are sampled at a rate of 4 to 1; so a 
given point represents the results of the analysis of four 
frames. Each note is held for approximately 1 s with a frame 
size of 16 ms which gives 64 events per note. 

The autocorrelation frequency tracker misses fewer 
frames in the regions between notes because it has a mecha- 
nism for not reporting a note if the value of the the function 
differs sufficiently from its ideal value. The points off the 
horizontal lines for this method represent single errors. The 
points on the time axis are the ones which have been 
dropped. However, this frequency tracker had more diffi- 
culty with tuning problems (points just off the horizontal 
line or a split within a horizontal line into two lines a semi- 
tone apart). The pattern recognition frequency tracker does 
better during the playing of the note, i.e., the horizontal lines 
are unbroken with the exception of the first note. The points 
that are off during the silences could easily be dropped for 
both methods by adding an amplitude detector. This was not 
done, nor did we require two or more frames to agree, as is 

usual for frequency trackers, as we did not want to eliminate 
the bases for comparisons for each of the adjustable param- 
eters. 

III. DISCUSSION AND CONCLUSIONS 

Essentially all errors with the pattern recognition meth- 
od were octave errors. We are able to eliminate these errors 

on the high side by a rather ingenious method suggested by 
Steven Haflich. A cross-correlation pattern is used with 
component spacing corresponding to 2f 3f 4f, 6f... that is, 
twice as many components as in the usual case but with alter- 
nating signs for these components. Thus the positive even 
components of this pattern will line up with harmonic spec- 
tral components as before; in this position the negative com- 
ponents of the pattern have no effect as they will fall between 
components of the sound. The value of the cross-correlation 
function will be the same at the position of the fundamental 
as with the previous pattern. Now however, when the pat- 
tern is aligned with its lowest component on the second har- 
monic (position of the octave up error) of the musical 
sound, each of the components of the pattern matches a com- 
ponent of the sound. Since every other component of the 
pattern has a different sign, the sum gives a low value of the 
cross-correlation function and eliminates this frequency as a 
candidate. 

This method of suppressing the cross-correlation peak 
for the second harmonic worked extremely well as predict- 
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FIG. 7. Effect on the frequency tracking results of varying the center frequencies in the calculation of the spectrum versus log frequency. Tunings range from 
97% to 103% of the standard tuning. 
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FIG. 8. Fundamental frequency tracking results using the method of pattern matching for nine instruments playing arpeggios. 

ed. We did not include these results for two reasons. First the 

"optimized" frequency tracker worked extremely well on 
the sounds studied without it; and second, the disadvantage 
of this method is that it doubles the number of components 

in the pattern. This adds to the calculation time, and de- 
creases the range of frequencies which can be examined. 

Our pattern recognition method has produced excellent 
tracking results for the musical sounds in this study. While 
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FIG. 9. Fundamental frequency tracking results using the method of narrowed autocorrelation for nine instruments playing arpeggios. 
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single examples of musical instruments can be atypical, the 
spectra of the sounds chosen varied from a simple spectrum 
consisting of a strong fundamental with a few higher har- 
monics to an extremely complex spectrum where the funda- 
mental was often weak and most of the energy was concen- 
trated in higher harmonics over 2000 Hz. The success of our 
frequency tracker in analyzing these sounds indicates the 
ability to deal with a wide variety of musical sounds. Finally, 
we emphasize that essentially perfect results could have been 
obtained for the sounds in this study simply by requiring that 
results from two successive frames agree. 
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