
Getting Started With
Handy Boards and Handy Logo

by

Robbie Berg
Department of Physics

and

Franklyn Turbak
Department of Computer Science

Wellesley College

The Handy Board and Handy Logo were developed by members of the
Epistemology and Learning Group at the MIT Media Lab as part of the
Programmable Bricks project. For more information please see

http://lcs.www.media.mit.edu/groups/el/elprojects.html

Getting Started With
Handy Boards and Handy Logo

Figure 1

1. Setting Up Your Handy Board

The Handy Board is a hand-held, battery-powered computer that can receive inputs
from electronic sensors (including touch, light, and sound sensors) and operate small
motors. It is designed for a variety of educational robotics uses, including mobile robot
projects, data-taking applications, and “ubiquitous computing” applications (projects that
embed computers in the world around us). A schematic drawing of the Handy Board is
shown in figure 1 above.

To use your Handy Board you will need to transfer computer instructions from a
Macintosh computer to the Handy Board. Instructions are sent to the Handy Board via a
cable that is connected to the Macintosh’s modem port.

The connections for downloading Handy Logo programs to the Handy Board are
shown in figure 2 below. Make sure the Handy Board is turned on; you should hear a
“boot beep” when you turn on the Handy Board and the green power light should come
on. (If you don’t see the green light, it probably means that the battery is dead. If you
don’t hear the beep, try turning off the Handy Board, waiting a couple seconds and
turning it back on.) If you plan to use motors or sensors in your project, you should
connect them to the motor ports (labeled motor 0 through motor 3 on the Handy
Board) and sensor ports

Download

Figure 2 - Connections for downloading programs to the Handy Board

2. Programming Your Handy Board

You program your Handy Board using a special version of Logo called Handy Logo.
(This software is actually built on top of MicroWorlds Logo.) The basic Handy Logo
interface is shown in Figure 3. (The “receive box” is not present in the version of Handy
Logo we are using.)

Procedure Window

Menu Item 1

Menu Item 7

Handy Logo
Command Center

Microworlds Command Center

Figure 3 - The Handy Logo Screen

To send an instruction to the Handy Board, simply type the instruction in Handy Logo
Command Center (not to be confused with the MicroWorlds Logo Command Center).
For example, type beep in the Handy Logo Command Center and press Return. The
instruction will be sent (via the serial cable) to the Handy Board, which will execute the
command—and you should hear a beep.

It is not uncommon to receive a "Brick not connected" message when you attempt to
send an instruction to the Handy Board. Often this message occurs because the
connections between the Macintosh and the Handy Board are not correct or because the
Handy Board is not receiving adequate power (e.g. it is turned off, or the battery is low).
However, you are also likely to encounter some spurious "Brick not connected"
messages. Usually turning the power off and on and resending the instruction will
(eventually) result in a success.

You can type any Handy Logo instruction in the Handy Logo Command Center, and it
will be immediately transferred to the Handy Board and executed. A full listing of Handy
Logo commands is included in a separate handout called The Handy Logo Language
Reference.

You can type any Handy Logo instruction in the Handy Logo Command Center, and it
will be immediately transferred to the Handy and executed. Plug motors into ports A and
B on the Handy, then try these commands (pressing the Return key after each command):

a, on Turns on the motor plugged into port A

rd Reverses direction of the motor

off Turns off the motor

onfor 20 Turns on the motor for 2 seconds

repeat 4 [onfor 10 wait 10] Turns motor on and off 4 times

ab, on Turns on motors in both ports A and B

b, rd Reverses direction of motor in port B

ab, off Turns off both motors

Now plug a touch sensor into digital switch port 7 and a light sensor into analog
sensor port 0, and try these commands:

waituntil [switch 7] onfor 20 Turns on motor when touch sensor pressed

on waituntil [switch 7] off Turns off motor when touch sensor pressed

on waituntil [sensor 0 < 100] off Turns off motor when light sensor blocked

2.1 Writing Handy Logo Programs

You can write programs for your Handy Board in the Procedure Window of Handy
Logo. For example, type the following code in the Procedure Window:

to double-beep
beep
wait 2
beep

end

Now, click on Handy Logo’s download button. Your double-beep procedure will
be downloaded to the Handy Board—but not executed yet. To execute your new
procedure, type double-beep in the Handy Logo Command Center and press Return.
Notice that the Handy Board’s green light goes on while the Handy Board is executing
the program. (Note that you can only download procedures when the green light is off—
that is, when the Handy Board is not executing a program.)

2.2 Using the Handy Logo Menus

You can “launch” a procedure directly from the Handy Board by pressing the white
START button on the Handy Board. First, you must write the name of the procedure in
the first “menu box” in Handy Logo. Then, click on the download button. The procedure
is now loaded into the memory of the Handy Board. You can now take the Handy Board
anywhere! It no longer needs to be in communication with the Macintosh, and if you
scroll the user knob until menu item (1) appears on the Handy Board’s screen and then
press the white START button the Handy Board will run the procedure. Similarly,
procedures loaded as menu items (2) through (7) can be started in this manner. An
asterisk will appear on the screen to indicate that the procedure is running. Pressing the
white STOP button will immediately stop all procedures from running.

2.3 Using the Handy Board’s LCD screen

You can information on the Handy Board’s screen using the print instruction. For
example try

print “hello prints the word “hello” on the screen

print [hello world] prints the phrase “hello world” on the
screen

loop [print sensor 0 wait 1] prints the value of the sensor plugged into
analog sensor port 0, updated 10 times a
second

Being able to view sensor data on the screen is incredibly useful in trying the figure
out what is going on with your robot, so useful in fact that Handy Logo has a “built-in”
ability to view the current values of all seven analog sensor ports at once: If you dial the
user knob all the way past menu item (7) you will see these sensor values displayed on
the screen.

2.4 Some useful programming idioms

Procedures can accept arguments using Logo’s colon syntax:

to arf :times
ab,
repeat :times [on wait 20 rd]

end

Procedures may return values using the output primitive:

to go
ab,
repeat third [on wait 10 rd]

end

to third
if sensora < 20 [output 1]
if sensora < 50 [output 2]
output 3

end

The go procedure will execute 1, 2, or 3 times depending on the value of
sensor A.

Data recording and playback

There is a single global array for storing data which holds 8K two-byte numbers.
There is no error checking to prevent overrunning the data buffer. The essential
primitives for data taking are:

record value - records value in the data buffer and advances the data record
pointer.

recall value - reports the value of the current data point and advances the data
playback pointer.

erase - Resets the value of the record pointer to zero.

resetr - Resets the value of the recall pointer to zero.

For example the procedure take-data can be used to store a number of data points
recorded by sensor A once every second:

to take-data :number
erase
repeat :number [record sensora wait 10]

end

while the procedure playback-data can be used to send the recorded back to a host
computer over the serial line

to playback-data :number
resetr
repeat :number [send recall sensora]

end

Multi-Tasking

Handy Logo has a number of different primitives for supporting multitasking. For
example

forever [action] launches a process to repeatedly execute
action

when [condition] [action] launches a process to repeatedly test
condition and execute action when it is true

every [time] [action] launches a process to execute action every
time tenths of a second

stoprules stops all running processes

For example, suppose a motor is connected to port A and a touch sensor to digital
sensor port 7. Note the behaviors obtained with the following different procedures:

to wiggle-and-beep-when-bumped
forever [a, onfor 2 rd]
when [switch 7] [beep]

end

to wiggle-until-bumped
forever [a, onfor 2 rd]
waituntil [switch 7]
stoprules ; stops the “forever” rule from running
beep

end

to wiggle-and-beep
forever [a, onfor 2 rd]
every 10 [beep]

end

Edge-triggered vs. level-triggered logic

Although the waituntil primitive is “level-triggered” the following example shows
how to use waituntil to trigger an action on the edge of an event.. Assume a touch
sensor is plugged into the digital sensor # 7 port.

to beep-once-per-press
waituntil [not switch 7]
waituntil [switch 7]
beep
beep-once-per-press

end

Alternatively, the when primitive is inherently edge-triggered, so another way to do
this is simply:

to beep-once-per-press
when [switcha] [beep]

end

3. Handy Logo Sampler

A Simple Program

Here’s a simple program written this summer by two 10 year old kids who wanted to
build a dancing robotic creature:

to dance
cha-cha-cha
go-round
shake-it

end

to cha-cha-cha
repeat 4 [back-and-forth]
ab, off

end

to back-and-forth
ab, thisway onfor 3
beep
ab, thatway onfor 3
beep

end

to go-round
a, on thisway
b, on thatway
beep wait 1 beep wait 1 beep
wait 60
ab, off

end

to shake-it
a, thisway
b, thatway
ab,
repeat 10

[beep
onfor 1
beep
rd
onfor 1
rd]

end

The Wandering LEGObug: An example with sensors

The LEGObug, is a creature with two motors connected to its two rear wheels. It also
has two touch sensors connected to two “whiskers” positioned on either sides of its head
and two light sensors that serve as “eyes”. Detailed plans for building the LEGObug are
available at the following URL:

http://lcs.www.media.mit.edu/people/fredm/projects/legobug/

The procedure seek shown below causes the creature to be attracted to bright light. It
assumes that the light sensors are plugged into the Handy Board’s sensor-ports “0” and
“1”. The light sensors have the property that the greater the amount of light that hits
them, the smaller the sensor value that is produced. (In typical indoor lighting the light
sensors might give readings in the 15 - 30 range, if you shine a flashlight on them, they
will produce a reading in the 1 - 5 range. It takes almost complete darkness to produce a
reading of 255.) The program below causes the creature to move forward if bright light
hits the light sensor plugged into sensor-port “0”

to seek
loop [

ifelse (sensor 0) < 10
;N.B. the parentheses are essential here!!
[go-forward]
[stop-motors]

]
end

to go-forward
ab, on thisway

;the motors are each hooked up so that the
;“thisway” direction causes them to drive forward

end

to stop-motors
ab, off

end

As an exercise you might try making creatures that run away from the dark, or ones
that turn toward a bright light.

The procedure wander shown below causes the LEGObug to drive straight until a
whisker bumps into an obstacle. (It assumes that the touch sensors are plugged into the
two of the digital sensor-ports. (the left touch sensor is plugged into digital sensor-port
“7” and the right touch sensor is plugged into digital sensor-port “8”) In an attempt to
avoid the obstacle, it the creature backs up a bit, turns a small (random) amount and
continues to drive forward.

to wander
go-forward
waituntil [or (touch-left?) (touch-right?)]
ifelse touch-left?

[back-up turn-right]
[back-up turn-left]

wander ;note tail recursive alternative to loop
end

to go-forward
ab, on thisway

end

to touch-left? ;touch-left reports “true” if the sensor
;plugged into digital sensor-port “7” is pressed

output switch 7
end

to touch-right? ;touch-right reports “true” if the
;sensor plugged into digital sensor-port “8” is pressed

output switch 8
end

to turn-right
;turns right for a random amount of time between 0 and
;5 seconds.
b, off 5
a, thisway onfor (random 50)

end

to turn-left
a, off
b, thisway onfor (random 50)

end

to back-up
ab, thatway onfor 20

end

