The BOW GNSS Receiver Project

Alex Morrow Alex.Morrow@olin.edu
Ziyi Lan Ziyi.Lan@students.olin.edu
Franklin W. Olin College of Engineering
October 28, 2015
INTRODUCTION TO GNSS CONCEPTS
GNSS: Global Navigation Satellite System

• A system employing satellites to provide global navigation information to users
• There are four GNSS systems
 • Galileo European Union (fully deployed 2020)
 • BEI-DOU China
 • GLONASS Russia
 • GPS US
• We’ll describe GPS as an example of how GNSSs work

• The GPS system is divided into three segments
 • GPS Space Segment (SS): 24+ Satellites
 • GPS Control Segment (CS): 16 sites
 • GPS User Segment (US): Half the world’s population?
GPS Technology Basics

Six orbits, four satellites in each

Each satellite has a schedule for broadcasting messages containing:

- Satellite identity,
- Time message transmitted (T\textsubscript{tx})
- Satellite’s precise location at T\textsubscript{tx}

1. **GPS Receiver**
 - Determines time it received message (T\textsubscript{rx})

2. Uses satellite’s T\textsubscript{tx} to determine distance \(d\) from receiver to satellite

3. Combines \(d\) from at least 4 satellites to determine:
 - Latitude
 - Longitude
 - Altitude

As a first approximation, \(d\) is \((T_{rx} - T_{tx})c\)

- GPS Satellite orbit: 22,000 kilometers (14,000 miles)
- Hubble and ISS orbits: \~400 kilometers (250 miles)

10/28/2015 Presentation to Wellesley College GIS Summit
Existing GNSS Receiver Types in 2014

<table>
<thead>
<tr>
<th>Surveying</th>
<th>Self-driving tractors</th>
<th>Undergraduate Research</th>
<th>Find way home</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20K+</td>
<td>$2K</td>
<td>$20</td>
<td></td>
</tr>
<tr>
<td>Centimeter ½ inch</td>
<td>Decimeter 6 inches</td>
<td>Accuracy</td>
<td>Ten meters 30 feet</td>
</tr>
</tbody>
</table>

- **Missing Link!**
- **Opportunity**
- **For BOW President’s Fund Project**

- Way too expensive
- Too expensive
- Inadequate Technology

10/28/2015

Presentation to Wellesley College GIS Summit
Existing GNSS Receiver Types in 2014

<table>
<thead>
<tr>
<th>Surveying</th>
<th>Self-driving tractors</th>
<th>Undergraduate Research</th>
<th>Find way home</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20K+</td>
<td>Centimeter ½ inch</td>
<td>$2K</td>
<td>$200</td>
</tr>
<tr>
<td></td>
<td>Decimeter 6 inches</td>
<td>$200</td>
<td>$20</td>
</tr>
<tr>
<td>$200</td>
<td>Meter 3 feet</td>
<td>$20</td>
<td>Ten meters 30 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Accuracy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$20K+</td>
<td>Centimeter ½ inch</td>
<td>Self-driving tractors</td>
</tr>
<tr>
<td>$2K</td>
<td>Decimeter 6 inches</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td>$200</td>
<td>Meter 3 feet</td>
<td>Find way home</td>
</tr>
<tr>
<td>$20</td>
<td>Ten meters 30 feet</td>
<td>BOW GNSS Receiver Idea</td>
</tr>
</tbody>
</table>

Way too expensive Too expensive Just right Inadequate Technology

10/28/2015 Presentation to Wellesley College GIS Summit
BOW GPSS Receiver Goals

• Primary goal:
 • Actual shared technology between BOW colleges
 • Education about shared technology (here you are!)

• GPSS Receiver Objectives:
 • Low Price (about $200 for whole receiver)
 • High Accuracy (looking for 1M accuracy)
 • Useful on all BOW campuses
 • Easy to adapt to different project types
 • Makes new technology available as soon as possible
 • Architectural design
 • Projects independent of GNSS technology changes
BOW GNSS Receiver technology search

Chosen for initial technology testing
u-blox GNSS chip

informal sanity testing

Upward compatible programming interface

Informal accuracy measurements

Quantity 1 prices

4 constellation

iPhone6

Ublox6

Ublox6P

Ublox7P

Ublox m8n

15m

15m

3m

1.8m

1.2m

0.6m

3DR

$89

$214

$119

$69

10/28/2015

Presentation to Wellesley College GIS Summit
GNSS Receiver Application

Olin College Team Sailing Project

Navigation system to let competitive blind sailors be more autonomous.

First on-water BOW GNSS Receiver Test

Olin College Research Boat Sailing in Charles River Basin

August 14, 2015
Cooperation with Wellesley

• Working with Prof. Katrin Monecke, Wellesley Department of Geosciences
 GNSS Receiver appropriate for Bathymetric research
 (How deep is the ocean?)
• Focus is for altitude (Z) accuracy
 • Harder than X/Y
Nice to talk to you!

Jason and Alex
Bibliography

- GNSS Resources (EU)
 - www.navipedia.net
- GPS Resources (US)
 - www.gps.gov
 - Wikipedia/gps
 - Wikipedia/gps signals
- General Questions
 - StackExchange for GIS
 - http://gis.stackexchange.com
- u-blox Corporation Resources