VIII. Exponential and logarithmic functions

A. Exponential functions

Definition. The function \(f(x) = b^x \), where \(b \) is a positive constant, is called the exponential function with base \(b \). It is defined for all real numbers \(x \), but see note below.

To graph, we plot a few points and join them with a smooth curve.

Example: \(f(x) = 2^x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>-1</th>
<th>-2</th>
<th>-3</th>
<th>1/2</th>
<th>3/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^x)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>(\sqrt{2} \approx 1.4)</td>
<td>((\sqrt{2}))^3 \approx 2.7</td>
</tr>
</tbody>
</table>

(The other graphs shown below were obtained similarly.)

Note: There is no easy way to compute (or even to define) such numbers as \(2^\pi \). We can approximate them, however. The number \(\pi \) can be thought of as the limit of the sequence

\[3, 3.1, 3.14, 3.141, 3.1415, 3.14159, \ldots \]

Then we get \(2^\pi \) as the limit of the sequence

\[2^3, 2^{31/10}, 2^{314/100}, 2^{3141/1000}, \ldots \], which is approximately 8.825.

Properties
1. \(b^x > 0 \) for every \(x \).
2. \(b^0 = 1 \) for every \(b \) (so the graph of \(f(x) = b^x \) always passes through \((0,1) \)).
3. If \(b > 1 \), then \(b^x \) increases without bound as \(x \) tends toward infinity and tends toward zero as \(x \) tends toward negative infinity. If \(0 < b < 1 \), then \(b^x \) approaches zero as \(x \) tends toward infinity and increases without bound as \(x \) approaches negative infinity. Thus the graph of \(b^x \) (for \(b \neq 1 \)) has the \(x \)-axis as a horizontal asymptote.

B. Logarithms

Notice from the graphs above that if \(b > 0 \) but \(b \neq 1 \) then for each positive number \(y \) there is exactly one number \(x \) for which \(b^x = y \). This number is called the logarithm of \(y \) base \(b \) or the base-\(b \) logarithm of \(y \) and is written \(\log_b y \). Thus, by definition, \(\log_b y \) is the exponent to which we must raise \(b \) in order to get \(y \). Saying \(x = \log_b y \) is equivalent to saying \(b^x = y \). Note that only positive numbers have logarithms!

\[
\begin{align*}
\text{Examples} & \quad \log_2 8 = 3 \text{ since } 2^3 = 8 & \log_2 1 = 0 \text{ since } 2^0 = 1 \\
& \quad \log_3 81 = 4 \text{ since } 3^4 = 81 & \log_2 2 = 1 \text{ since } 2^1 = 2 \\
& \quad \log_2 \frac{1}{4} = -2 \text{ since } 2^{-2} = \frac{1}{4} & \log_2 8 = \frac{3}{4} \text{ since } 16^{3/4} = 8
\end{align*}
\]

To repeat: \(\log_b y = x \) is equivalent to \(b^x = y \).

Example Find \(x \) if \(\log_5 x = 4 \).

\[
x = 5^4 = 625 \quad \text{by definition of logs.}
\]

To graph a logarithmic function, note that if \((c,d)\) is a point on the graph of \(b^x \), so that \(d = b^c \), then \((d,c)\) will be a point on the graph of \(\log_b x \), because \(c = \log_b d \). So the log. graph is the "inverse" of the exponential graph.

Example

\[
f(x) = \log_2 x
\]
Properties For every $b > 0$ ($b \neq 1$):
1. $\log_b 1 = 0$
2. $\log_b b = 1$
3. $\log_b (b^x) = x$, where x is any number or expression.
4. $b(\log_b x) = x$, where x is any positive number or expression.

You may be most familiar with base-10 logarithms, e.g. $\log_{10}(0.1) = -1$ since $10^{-1} = 0.1$; $\log_{10} 1000 = 3$ since $10^3 = 1000$.

Exercises VIII. AB
Sketch the graphs of the following functions.
1. $f(x) = 3^x$
2. $g(x) = (1/3)^x$
3. $h(x) = \log_3 x$
4. Find: (a) $\log_3 27$ (b) $\log_2 \sqrt{2}$ (c) $\log_{10} 100$ (d) $\log_3 (1/27)$
5. Solve for x: (a) $\log_2 x = 3$ (b) $\log_5 (1/x) = 1$ (c) $2^x = 3$
6. Simplify: (a) $\log_{10} (10^x)$ (b) $5 \log_5 x^2$

C. Rules of computation for logarithms
Since logarithms are related to exponential functions, each of the rules for exponents gives rise to a corresponding rule for logarithms. Besides the facts that have already been listed, there are the following properties of logs:

\[
\log_b (xy) = \log_b x + \log_b y \quad \text{(this comes from } b^x b^y = b^{x+y})
\]
\[
\log_b \frac{x}{y} = \log_b x - \log_b y
\]

In particular, $\log_b \frac{1}{y} = -\log_b y$ (since $\log_b 1 = 0$)

\[
\log_b x^y = y \log_b x \quad \text{(this comes from } (b^x)^y = b^{xy})
\]

Examples 1. If $a = \log_{10} 2$ and $b = \log_{10} 3$, write $\log_{10} 6$ in terms of a and b.

\[
\log_{10} 6 = \log_{10} (2 \cdot 3) = \log_{10} 2 + \log_{10} 3 = a + b.
\]
2. With \(a \) and \(b \) as in (1), write \(\log_{10}(0.6) \) in terms of \(a \) and \(b \).

\[
\log_{10} 0.6 = \log_{10}(6/10) = \log_{10} 6 - \log_{10} 10 = a + b - 1.
\]

3. Write \(\log_3(x-1) + 2 \log_3(x-2) - 3 \log_3(x-4) \) as a single logarithm.

\[
\log_3(x-1) + 2 \log_3(x-2) - 3 \log_3(x-4)
= \log_3(x-1) + \log_3(x-2)^2 - \log_3(x-4)^3
= \log_3[(x-1)(x-2)^2] - \log_3(x-4)^3 = \log_3 \left(\frac{(x-1)(x-2)^2}{(x-4)^3} \right).
\]

4. Find \(x \) if \(10^{(\log_{10}x^2 + 3\log_{10} x)} = 2 \).

\[
\log_{10} x^2 + 3 \log_{10} x = \log_{10} x^2 + \log_{10} x^3
= \log_{10} (x^2 \cdot x^3) = \log_{10} x^5,
\]
so \(10^{(\log_{10} x^2 + 3 \log_{10} x)} = 10^{\log_{10} x^5} = x^5 = 2 \),
and \(x = 2^{1/5} = 5^{\frac{1}{2}} \).

Exercises VIII C

1. Write as a single logarithm.
 (a) \(\log_b(x+1) + \log_b(x-2) + 2 \log_b(x-3) \)
 (b) \(\frac{1}{2} \log_b(x+1) - \frac{1}{2} \log_b(x-1) \)

2. Let \(a = \log_{10} 2 \), \(b = \log_{10} 3 \), \(c = \log_{10} 5 \). Write the following in terms of \(a \), \(b \), and \(c \):
 (a) \(\log_{10} 360 \)
 (b) \(\log_{10} \frac{54}{25} \)

3. Write using sums and differences of logs and only first powers of \(x \).
 (a) \(\log_b \frac{x+1}{x+2} \)
 (b) \(\log_b \frac{(x-1)^2(2x+1)^3}{\sqrt[3]{(4x-1)^2}} \)

4. Solve for \(x \):
 (a) \(\log_2 \sqrt{3x+1} = 1 \)
 (b) \(3^{-2} \log_3 x = 1/3 \)
D. The natural logarithm

There is a special number, \(e \), equal to approximately 2.71828, which occurs frequently in mathematics and the sciences. The logarithm using \(e \) as base turns out to be most important. This logarithm is called the natural logarithm and one often writes \(\ln \) instead of \(\log_e \). Thus \(y = \ln x \) means \(y = \log_e x \) which means \(e^y = x \). Sometimes instead of \(e^x \) one writes \(\exp(x) \). This is called the natural exponential function. All the usual properties of exponents and logarithms hold for the functions \(\exp(x) \) and \(\ln x \).

Answers to Exercises VIII

AB:

1. \(y = 3^x \)
2. \(y = \frac{1}{3^x} \)
3. \(y = \log_3 x \)

4. (a) 3 (b) 1/2 (c) 2 (d) -3
5. (a) \(x = 2^3 = 8 \) (b) \(x = 5 \) (c) \(x = \log_2 3 \)
6. (a) \(x \) (b) \(x^2 \)

C: 1. (a) \(\log_b (x+1)(x-2)(x-3)^2 \) (b) \(\log_b \sqrt{\frac{x+1}{x-1}} \)
2. (a) \(\log_{10} 360 = \log_{10} (2^2 \cdot 3^2 \cdot 10) = 2\log_{10} 2 + 2\log_{10} 3 + \log_{10} 1 \)
 \[= 2a + 2b + 1\]
 (b) \(\log_{10} (54/25) = \log_{10} 54 - \log_{10} 25 = \log_{10} (2 \cdot 3^3) - \log_{10} 5^2 \)
 \[= a + 3b - 2c\]
3. (a) \(\log_b (x+1) - \log_b (x+2) \)
 (b) \(2 \log_b (x-1) + 3 \log_b (2x+1) - (2/3) \log_b (4x-1) \)
4. (a) \(\frac{1}{2} \log_2 (3x+1) = 1 \), \(2 \log_2 (3x+1) = 3x+1 = 2^2 \), so \(x = 1 \).
 \(\log_3 \frac{1}{x^2} = \frac{1}{2} = \frac{1}{3} \), so \(x = \pm \sqrt{3} \)