Steroid hormones act in the brain to profoundly influence behaviour and physiology. These hormones elicit many of their biological effects by binding to their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. Receptors for oestrogens (ER), progestins (PR) and androgens (AR) can act in a classic genomic mechanism of action by binding directly to target DNA to alter transcription (1). In addition, these receptors can act in a rapid, nonclassical manner, involving receptors located at the membrane that activate intracellular signalling pathways in the brain (2–7). In the classic genomic mechanism of action, nuclear receptor coregulators enhance (coactivators) or repress (corepressors) the transcriptional activity of steroid receptors. Over 350 coregulators have been identified to function with the large superfamily of nuclear receptors (8). Knowledge of the function of these coregulators in behaviour, physiology and disease is growing rapidly. The present review focuses on the role of the p160 steroid receptor coactivator family in the classic genomic mechanism of ER and PR action in the brain and the regulation of behaviour.

Genomic mechanisms of ER and PR action

ER and PR, as well as other steroid receptors, have a modular domain structure consisting of a highly variable amino-terminal region (N-domain), a conserved central DNA-binding domain and a carboxy-terminal ligand binding domain (1,9). In general, steroid receptors have two transcriptional activation domains in the amino (AF-1) and carboxyl (AF-2) termini (10). Intracellular ER are expressed as two subtypes, α and β, which are transcribed from different genes (11,12). These subtypes differ in their abilities to bind different ligands and regulate transcription (13,14), distribution in the brain (15–18) and regulation of behaviour (19–23). In addition, there are ER splice variants (24–26) that bind differentially with coactivators (27) and may provide another level of regulation.

In most species, PR are expressed in two forms, the full-length PR-B and the N-terminally truncated PR-A, which are encoded by the same gene but are under the regulation of alternate promoters and internal translation start sites (28,29). Under certain cell and promoter contexts, human PR-B is a stronger transcriptional activator than PR-A (30–32) and PR-A can repress the transcriptional activity of PR-B. These differences are most likely the result of an additional AF domain in the N-terminus of PR-B (33) and a transcriptional inhibitory region that has been identified in PR-A (32,34), respectively. In further support of these differences in PR-A and PR-B, these two PR isoforms appear to have distinct functions in reproductive behaviour and physiology (35,36).

In the classic, ligand-dependent, genomic mechanism of action of ER, PR and other steroid receptors, they are complexed with several chaperone molecules, including heat shock proteins (hsp), in the absence of hormone. Upon binding hormone, receptors undergo
a conformational change that causes the dissociation of hsp, allowing receptors to dimerise (37). Activated receptors bind directly to specific steroid response elements (SRE) and SRE-like sequences in the promoter regions of target genes (1,9). Binding of receptors to DNA increases or decreases gene transcription by altering the rate of recruitment of general transcription factors and influencing the recruitment of RNA polymerase II to the initiation site (38,39). It is generally considered that oestrogens and progestins can act in the brain via their respective receptors to alter neuronal gene transcription in a fashion similar to that described above, resulting in profound changes in behaviour and physiology (4,40,41).

Nuclear receptor coregulators

Coregulators consist of coactivators and corepressors that are required for efficient transcriptional regulation by nuclear receptors (8,42). Corepressors and their complexes associate with nuclear receptors when unliganded or bound to antagonists and serve to repress nuclear receptor transcription by recruiting corepressor complexes to the cis-active elements in the promoter and enhancers of target genes (42). Nuclear receptor coactivators, which are the focus of the present review, dramatically enhance the transcriptional activity of ER and PR, as well as other nuclear receptors, by acting as bridging molecules between the receptor and the general transcription machinery and modifying chromatin within the promoter and enhancer regions by histone acetylation, methylation and phosphorylation (42,43). Under most conditions, steroid receptors interact with coactivators in the presence of an agonist but not in the absence of ligand or in the presence of an antagonist or a selective receptor modulator (44–47); but see also additional studies (48–50). In vitro studies indicate that recruitment of nuclear receptor coactivators is rate-limiting in steroid receptor-mediated gene transcription (42,51). In further support of the importance of nuclear receptor coactivators in steroid-dependent transcription in vitro, squelching, or the repression of the transcriptional activity of one steroid receptor by another, is reversed by the addition of coactivators (44). Thus, a critical component of efficient steroid dependent transcription is the recruitment by receptors of nuclear receptor coactivators to the complex (8,42). Finally, the significance of both coactivators and corepressors in a variety of diseases, including hormone-dependent cancer and some neurological disorders, is becoming more apparent (8).

The p160 steroid receptor coactivator (SRC) family

The SRC family of p160 proteins consists of SRC-1 (NcoA-1), SRC-2 (GRIPI/TIF2/NCoA-2) and SRC-3 (AIB1/TRAM-1/ACTR/RAC3/pCIP). Nuclear receptor coactivators, including the SRC coactivator family, share a general set of characteristics. The SRC family of coactivators physically interacts with steroid receptors, including ER, PR, AR and receptors for glucocorticoids, in a ligand-dependent manner (43). The SRCs physically interact with agonist-bound receptors through centrally-located multiple LXXLL motifs (L, leucine; X, any amino acid) that make up nuclear receptor boxes. The SRCs and other coactivators do not bind DNA and thus distinguish them from traditional transcription factors. The C-terminus of the SRCs contains two activation domains: AD-1 and AD-2. The N-terminus contains a third activation domain (AD-3) and a basic helix loop helix–Per Antn Sims (bHLH-PAS) motif, which is the most conserved domain within this family of proteins. The activation domains interact with secondary coactivators known as co-coregulators (43). These co-coregulators modify chromatin to facilitate binding of regulatory proteins and general transcription factors.

The p160 SRC family in reproductive physiology and behaviour

Expression and regulation in the brain

Sex steroids, including oestrogens, progestins and androgens, are required for brain development and reproductive behaviour in rodents and birds. Therefore, both rodents and birds represent excellent models for studying coactivator function in the brain. In male and female rodents, SRC-1 mRNA and protein are expressed at high levels in the cortex, hippocampus, cerebellum and hypothalamus (52–58,59: 94). In addition, the SRC-1 isoform, full length SRC-1a, is found in high levels in the rodent hypothalamus, whereas levels of the C-terminally truncated SRC-1e are higher in the nucleus accumbens, thalamus and amygdala (54). Recently, this SRC-1a : SRC-1e ratio has been shifted in the central nucleus of the amygdala using antisense targeting the SRC-1e isoform, which may prove valuable for studying the functions of these SRC isoforms in the brain (60). The expression of SRC-1 in the female rat brain appears to decline as the animal ages, suggesting a loss of steroid sensitivity (61). SRC-2 is highly expressed throughout the hippocampus, amygdala and hypothalamus, including the medial preoptic area (MPOA), ventral medial nucleus (VMN), arcuate nucleus (ARC), bed nucleus of the stria terminals, supraoptic nucleus and suprachiasmatic nucleus (58,62–64). Although it is not known whether a sex difference exists, SRC-3 is expressed predominantly in the hippocampus and very sparsely in the hypothalamus in both male and female rodents (58,64).

The avian brain provides an excellent model for studying steroid action since singing and nonsinging birds respond to steroids. Songbirds have a specific group of interconnected nuclei called the song control system that are required for singing and are sexually dimorphic and steroid-sensitive (65). In the songbird zebra finch, AR and ER are expressed in the song control nuclei from early post-hatching ages (66–68). Injection of 17β-oestradiol in early post-hatching females masculinises the song system and makes the females capable of singing as adults (69–72). Although the organo-skeletal effects of oestrogens are limited to early development in zebra finches, in other songbirds, such as canaries, manipulation of these hormones during adulthood affects the size of song nuclei and song (73). In the quail, a nonsinging bird, steroids regulate both appetitive and consummatory (copulatory) male sexual behaviour (74–77). Members of the p160 family of steroid receptor coactivators, SRC-1 and SRC-2, are expressed in both...
songbirds and nonsinging birds. SRC-1 mRNA is expressed as early as post-hatching day 1 in the telencephalon of zebra finches, and in the song control nuclei and hypothalami of adult canaries and zebra finches (79,80). Interestingly, SRC-1 mRNA and protein show a male-biased expression in the song nucleus HVC of adult canaries and zebra finches, respectively (79,80). In the quail brain, SRC-1 is expressed in the steroid sensitive areas, including the POM and bed nucleus of stria terminalis (79). Similar to SRC-1, quail POM expresses SRC-2 protein in a level that is similar in males and females (81).

For coactivators to function with steroid receptors, they must be expressed in the same cells. Oestradiol-priming dramatically increases the expression of PR in a variety of rodent brain regions, including the MPOA, VMN, ARC and the midbrain central grey (82–87). We found that SRC-1 and SRC-2 are expressed in the majority of oestradiol-induced PR cells in regions involved in female reproduction, including the VMN, MPOA and ARC in rats and mice (62,88,89). Given that almost all oestradiol-induced PR cells in the hypothalamus contain ERα (84,85), these findings suggest that these coexpressing cells represent functional sites of interaction between steroid receptors and coactivators in the brain (62,88,89). In further support, SRC-1 was found to be expressed in oestrogen-sensitive pro-opiomelanocortin and steriodogenic factor-1 neurones in the arcuate nucleus and ventromedial hypothalamus (VMH), respectively (90).

It is assumed that coactivators are modulators of cellular responsiveness to steroids. In support, SRC-1 knockout mice, although fertile, have decreased responsiveness in proestin target tissues (91) and partial resistance to thyroid hormone (92). It is important to note that, in these mice, SRC-2 is up-regulated in steroid sensitive tissues, including the brain and testes, suggesting that increased expression of SRC-2 compensates for the loss of SRC-1 (91). Therefore, studying the regulation of coactivator expression is essential for understanding hormone action in the brain. A number of studies indicate that hormones can regulate coactivator expression in rodent and bird brains. In rodents, SRC-1 is expressed in a sexually dimorphic manner in the pituitary gland, with males having higher mRNA (52) and protein (93) levels than females. In further support, male rodents have higher levels of SRC-1 than females in a number of brain regions, including the dorsomedial hypothalamus, VMH and paraventricular nucleus (94). Ovariectomy decreases SRC-1 expression in the VMH, whereas oestradiol reverses this effect (85). In the hypothalamus of cycling female rats, SRC-1 levels were lowest during di-oestrus, and highest at pro-oestrus and oestrus, suggesting that ovarian hormones up-regulate SRC-1 (96). By contrast, ovariectomy did not alter SRC-1 levels in the hippocampus, suggesting that ovarian hormones do not regulate SRC-1 expression in this brain region (97). Interestingly, the endocrine disruptor 4-methylbenzylidene camphor (4-MBC), which has oestrogenic activity and impairs the thyroid axis, increases SRC-1 mRNA in the VMH and MPOA of female rats (98). Exposure to another endocrine disruptor, 3-benzylidene camphor (3-BC), during early development through adulthood increases SRC-1 mRNA levels in the MPOA of both males and females (99). These effects of 4-MBC and 3-BC on SRC-1 could enhance their oestrogenic effects and alter other nuclear receptor signalling pathways. Testosterone treatment does not alter SRC-1 expression in the MPOA, bed nucleus of the stria terminalis (BNST), ARC and amygdala of castrated hamsters (100). However, testosterone decreases SRC-2 expression in the hypothalamus of male rats (63). Finally, thyroid hormone decreases SRC-1 expression in rat cortex and dentate gyrus (101) and neonatal mouse cerebellum (102). In adult birds, testosterone increases SRC-1 expression in the quail hypothalamus (103), whereas the administration of oestradiol, testosterone or aromatase inhibitor has no effect on SRC-1 expression in zebra finches (80).

In addition to gonadal steroids, it appears that glucocorticoids and stress can influence SRC-1 expression. Treatment of male rats with the synthetic glucocorticoid, dexamethasone, reduces SRC-1 mRNA in the brain but does not affect the other members of the p160 family of coactivators, SRC-2 and SRC-3 (104). In further support, adrenalectomised male rats exposed to high levels of corticosterone have decreased SRC-1 mRNA levels in the anterior pituitary but, interestingly, no changes were detected in the hippocampus (105). In rats, acute restraint stress decreases SRC-1 expression in the male and female hypothalamus and male frontal cortex, and increases SRC-1 levels in the male pituitary and the female hippocampus (93). Taken together, these studies suggest that glucocorticoids and stress may alter brain function by influencing coactivator expression in a brain region- and sex-specific manner.

Daylength has profound effects on reproduction and other neuroendocrine events (106). In male Siberian hamsters exposed to short days, we found reduced SRC-1 expression in the posteromedi- nal BNST and posterodorsal medial amygdala (100). In addition, SRC-1 expression in the hippocampus, hindbrain and optic lobes change through the day in Japanese quail (103,107). Given that both Sibe- rian hamsters and Japanese quail have seasonal cycles, these find- ings suggest that this photoperiodic regulation of SRC-1 contributes to androgen regulation of seasonal reproduction.

An increasing number of novel functions are being attributed to the p160 family of coactivators. For example, SRC-1 is predomi- nantly expressed in neuronal lineage cell lines during neural stem cell differentiation (108). In addition, this expression of SRC-1 is higher in mature neurones than immature neurones, suggesting a role for SRC-1 in the differentiation of neural stem cells (108). Further investigation of coactivator expression will be essential to fully understand their function in hormone action.

In addition to regulation of coactivator expression, functional interaction of coactivators with receptors can be affected by post-translational modifications, such as phosphorylation, methylation and acetylation of coactivators (109). For example, SRC-1, SRC-2 and SRC-3 undergo phosphorylation at different sites (110–114), which can alter the conformation, stability and activity of these proteins (109,110). Given that these posttranslational modifications have been studied in cell culture systems, it will be important in future studies to explore whether these modifications occur in the brain and impact behaviour.

Regulation of steroid-dependent gene expression in the brain by coactivators

A classic example of steroid-dependent gene expression is the oes- tradiol-induction of PR in a variety of oestrogen-responsive tissues,
including the brain, breast and uterus (82–87). Induction of PR expression by oestradiol in the VMH is important for steroid-depen-
dent female sexual behaviour in rodents (115). Therefore, we tested
the hypothesis that SRC-1, along with the co-activator CREB-
binding protein (CBP), is critical for modulating ER-mediated trans-
activation of the PR gene in the VMN. Infusions of antisense to
SRC-1 and CBP mRNA into the VMN of adult female rats reduced
the expression of ER-mediated activation of PR gene expression
compared to controls (56). These findings extend previous in vitro
studies indicating that SRC-1 and CBP act together to modulate ER
and PR function (116,117). Another study in rodent brain supports
these findings with respect to SRC-1 function in the ER-mediated
induction of PR in the VMN, extending them to include a role for
SRC-2 but not SRC-3 (64). In a mouse hypothalamic neuronal cell
line, ERβ bound to the ERβ agonist, 3β-diol, increased oxytocin
gene mRNA levels and the occupancy of the oxytocin gene pro-
moter by SRC-1 and CBP (118). These results suggest that SRC-1
and CBP form a coactivator complex that regulates oxytocin gene
expression (118) and support the findings reported above showing
that SRC-1 and CBP function in ER-mediated induction of PR in
the brain (56).

In male quails, the volume of the POM, a critical brain region in
male sexual behaviour, and aromatase expression is increased by
testosterone treatment within 14 and 2 days, respectively (74).
Interestingly, knocking down SRC-1 by antisense decreases the
testosterone-dependent POM volume and aromatase immunoreactivity
in male quails, suggesting a role for SRC-1 in testosterone-induced
changes in brain structure and gene expression in birds (119).
Although not a member of the p160 family of coactivators, another
steroid receptor coactivator, ribosomal protein L7 (RPL7, aka L7/
SPA), has been well-studied in the bird brain. RPL7 is part of the
ribosomal complex required for transcription and translation (120)
and has been shown to be a coactivator for ERα, PR and vitamin D
receptor (121,122). In the song system of zebra finches, RPL7 protein
shows a greater expression at posthatch day 1 and in adult
males compared to females (123). Antisense administration to RPL7
mRNA increased neuronal death in HVC and Area X, suggesting a
role for this coactivator in neuroprotection (124). Similar effects of
reducing RPL7 were observed in neuronal cultures from posthatch
day 1 males and females, with neuronal loss being greater in males
compared to females. Oestradiol treatment prevented the neuronal
loss caused by antisense to RPL7, suggesting that the neuroprotective
effects of oestradiol are not dependent on ERα in this model
(124,125).

In further support of a role for the p160 family of coactivators
in modulating ER action in the brain, studies have recently been
performed in human astrocytoma cell lines. Oestradiol treatment
increases the number of cells in two (U373 and D54) astrocytoma
cell lines (126). This effect appears to be mediated by ERα, given
that the ERα agonist (propyl-pyrazole-triol; PPT), but not the ERβ
agonist (diarylpropionitrile), mimicked the effects of oestradiol on
cell proliferation. Interestingly, coactivator silencing by RNA inter-
ference of SRC-1 (but not SRC-3) blocked the PPT-induced increase
in cell number, suggesting that SRC-1 regulates the ERα-mediated
increase in cell number in these astrocytoma cell lines (126). In a
related study, progesterone increases vascular endothelial growth
factor expression (VEGF) in this D54 astrocytoma cell line (127).
Silencing of SRC-1 reduced VEGF protein levels following proges-
terone treatment, suggesting that SRC-1 is important in modulating
the expression of this progestin sensitive gene (127). Future studies
in the brain and cell lines will be critical for further determining
the function of coactivators in modulating steroid action in the
brain.

Coactivators modulate steroid-dependent behaviours

Given that nuclear receptor coactivators appear to be essential for
hormone-dependent gene expression in the brain, we tested the
hypothesis that coactivators act in the brain to modulate the
expression of hormone-dependent behaviours (56,128). Female rats
treated with antisense to both SRC-1 and CBP mRNA into the VMN
showed lower levels of steroid-dependent lordosis compared to
scrambled-treated controls (56). Another study supported these
findings with SRC-1 and extended them to include a role for SRC-2
in hormone-dependent lordosis (64). In further support of the gene
expression studies discussed above, SRC-3 did not appear to func-
tion in the brain in steroid-dependent lordosis (64). Given that ERα
(and not ERβ) appears to mediate female sexual behaviour in rats
(129), these findings suggest that SRC-1 and SRC-2 are functioning
with ERα to elicit these effects on behaviour.

One limitation of the behavioural experiments discussed above is
that they do not isolate the effects of coactivators on specific ER-
and PR-dependent aspects of female sexual behaviour. Therefore,
we designed experiments aiming to investigate whether coactiva-
tors act specifically with ER or PR in the brain to influence behav-
ior in rats (128). To test the hypothesis that coactivators modulate
ER-mediated aspects of female sexual behaviour, animals were
injected with two slightly higher doses of oestradiol alone, which
elicit lordosis (41). Antisense to SRC-1 and CBP infused into the
VMN of animals treated with oestradiol decreased the frequency
and intensity of lordosis, suggesting that these coactivators modu-
late ER-mediated aspects of female sexual behaviour (128). To
investigate whether coactivators act with PR in the brain to influ-
ence behaviour, we took advantage of the fact that proceptive
behaviours by the female, such as ear-wigging and hopping and
darting that serve to solicit interaction by the male, are PR-depen-
dent (130,131). In this experiment, antisense to SRC-1 and CBP
mRNA was infused into the VMN after priming with oestradiol
around the time of progesterone administration. This timing of co-
activator antisense infusion allowed for the disruption of PR activity
but did not alter induction of PR by oestradiol. Females treated
with antisense to coactivators had a reduced frequency of PR-
dependent ear-wigging and hopping and darting but not PR-
dependent receptivity (128). These findings suggest that a reduction
of SRC-1 by antisense disrupted the activity of PR signalling path-
way(s) influencing proceptivity, whereas alternate PR signalling
pathways that regulate PR-dependent receptivity remained intact
and functional. Thus, it appears that coactivators function in the
brain to modulate both PR- and ER-specific aspects of steroid-
dependent female sexual behaviours in rodents.
Studies in male quails provide further support for a role of SRC-1 and SRC-2 in regulating behaviour. Antisense to SRC-1 in the POM of quail inhibited both AR- and ER-mediated sexual behaviour (132). In quails, strutting and crowing by males as responses towards females are androgen dependent, whereas mount attempts, mounts and cloacal contact movements by the male are oestrogen-dependent (76,77). Testosterone injection induces these behaviours by directly acting on AR and on ER following the aromatisation of testosterone to oestrogens. Antisense to SRC-1 blocked all of these testosterone-mediated male sexual behaviours, which were reinstated after terminating the antisense treatment (132). SRC-2 is also required in reproductive behaviour, as demonstrated by a reduction in the size of the POM, as well as a decrease in testosterone-induced male sexual behaviour, following SRC-2 antisense injection into the third ventricle (81).

Coactivators from brain associate with ER and PR

As noted above, one of the criteria of nuclear receptor coactivators is that they physically associate with receptors. To test the hypotheses that members of the p160 family of steroid receptor coactivators from brain physically associate with ER and PR subtypes in a ligand-dependent manner, we developed pull-down assays with brain tissue from female rodents.

SRC-1 from rat hypothalamic or hippocampal extracts interacted with Flag-tagged ERα and ERβ when bound to oestradiol, which was confirmed by mass spectrometry (133). Little to no association of SRC-1 from brain with ERα or ERβ was detected in the absence of ligand or in the presence of tamoxifen, a selective ER modulator (SERM). These findings suggest that SRC-1 from brain interact with ER in a ligand-dependent manner and that the SERM tamoxifen functions as an antagonist in this assay to prevent receptor-coactivator interactions. In further support, the ERα agonist, PPT, promoted physical association between ERα and SRC-1 in the hypothalamus, as detected by co-immunoprecipitation (90). These results support our previous findings that SRC-1 action in the hypothalamus is important for maximal ER-mediated transactivation of the PR gene and expression of female sexual behaviour (56,128). SRC-1 may function with both ER subtypes in the hippocampus to differentially modulate the effects of oestrogens on cognition and stress (19,23,134–137). Interestingly, SRC-1 from the hippocampus interacted equally with ERα and ERβ, whereas SRC-1 obtained from hypothalamic extracts interacted more with ERα than with ERβ, suggesting that other cofactors involved in these protein–protein interactions have different expression patterns in these brain regions. In addition, it is possible that SRC-1 undergoes distinct post-translational modifications (e.g. phosphorylation) in these two brain regions, leading to differential interactions with receptors.

Similar to findings with SRC-1 and as also confirmed by mass spectrometry, SRC-2 from hypothalamus or hippocampus interacted with ERα in a ligand-dependent manner (62). However, in dramatic contrast to SRC-1, SRC-2 from the brain showed little to no interactions with ERβ under any ligand conditions. This weak association of oestradiol-bound ERβ with SRC-2 from brain is in contrast to cell culture studies indicating that over-expressed SRC-2 interacts with ERβ (138–141). It is possible that the over-expression of coactivators leads to altered interactions with receptors and/or that the presence of other factors in the brain may mediate appropriate receptor-coactivator associations. Taken together, these findings suggest that it is important to use biologically-relevant tissue when studying these receptor-coactivator interactions. Finally, these differential interactions between SRC-2 and ERα and ERβ may contribute to the functional differences of these ER subtypes in the brain (19). In future studies, it will be important to explore the possibilities that coactivators, including the SRCs, function in non-genomic oestrogen signalling pathways in the brain.

Interactions between coactivators from brain and the PR isoforms have also been studied. SRC-1 from rat hypothalamic or hippocampal extracts interacted with both GST-tagged PR-A and PR-B when bound to the agonist R5020 but not in the absence of ligand or in the presence of the selective PR modulator, RU486 (133). These agonist-dependent interactions between PR and SRC-1 from brain support our previous work indicating a role for hypothalamic SRC-1 in PR-dependent female sexual behaviour (128) and provide evidence that SRC-1 may contribute to progestin effects in the hippocampus on memory (142,143). Interestingly, we found that SRC-1 from the hypothalamus or hippocampus interacts more with PR-B, than with PR-A. In regard to SRC-2, we found that this coactivator interacted with PR-B (but not PR-A) in a ligand-dependent manner. Furthermore, cell culture studies suggest that, under certain circumstances, human PR-B is a stronger transcriptional activator than PR-A (32,144,145), likely as a result of the additional activation function (AF-3) of PR-B (33,146). Our findings showing that these coactivators interact more with PR-B than PR-A are consistent with some cell culture studies (145) and suggest a mechanism by which PR-B may be a stronger transcriptional activator than PR-A. However, it should be noted that, although studies using PR-A and PR-B specific knockouts reveal that both receptors are important for the full display of progesterone-facilitated lordosis, PR-A has a greater role than PR-B in ligand-independent lordosis facilitated by the cyclic AMP analogue, 8-bromo-cAMP (35). We are currently using mouse PR and mouse brain tissue to explore PR-coactivator interactions. In future studies, it will be important to investigate the function of the SRCs and other coactivators in the ligand-independent activation of PR in the rodent brain. Understanding how nuclear receptor coactivators interact with various steroid receptors, and their subtypes, is critical for understanding how hormones act in different brain regions to profoundly influence physiology and behaviour. Ultimately, mass spectrometry analyses of these receptor-coactivator interactions using brain tissue may allow the identification of novel coregulators involved in the steroid receptor complex in the brain.

Conclusions

Following the discovery of the p160 family of coactivators and other nuclear receptor coactivators, findings from in vitro and cell culture studies have revealed much about the function of coactivators in steroid action. More recently, approaches using animal
models and neuronal cell lines have greatly expanded our knowledge of coactivator function and enabled us to better understand how these coactivators modulate steroid action in brain and influence complex behaviours. In addition, our recent receptor–coactivator interaction studies using rodent brains discussed above highlight the significance of using biologically-relevant tissue for exploring these important interactions. A critical question in neuroendocrinology is how individual cells respond to steroids and how this responsiveness can change over time or with experience. The regulation and expression of a large diversity of nuclear receptor coactivators, including the p160 family of coactivators, provides a mechanism by which individual cells in specific brain regions can differentially respond to hormones and enable the adjustment of this sensitivity to steroids in response to changes in external stimuli. In addition, recruitment of different members of the p160 family of coactivators by receptors may lead to distinct signalling pathways and behaviours (Fig. 1). In support, in vitro studies show that ERs recruit either SRC-1 or SRC-2 depending on the oestrogen response element (147). Future research using a variety of animal models, including rodent and bird models, will continue to investigate the function of these important regulatory proteins in behaviour, physiology and disease.

Acknowledgements

Studies contributed by the authors’ laboratory were supported by grants received from the National Institutes of Health R01 DK61935 (M.J.T.).

Received 15 April 2013, revised 3 June 2013, accepted 18 June 2013

References

2 Comil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol 2012; 33: 425–446.

48 O'nate SA, Boonyaratankornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 1998; 273: 12101–12108.

102 Ramos HE, Weiss RE. Regulation of nuclear coactivator and corepressor expression in mouse cerebellum by thyroid hormone. Thyroid 2006; 16: 211–216.

111 Rowan BG, Garrison N, Weigel NL, O’Malley BW. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 2000; 20: 8720–8730.

124 Duncan KA, Carruth LL. The song remains the same: coactivators and sex differences in the songbird brain. Front Neuroendocrinol 2011; 32: 84–94.

cell growth in human astrocytoma cell lines through ERalpha activation and its interaction with SRC-1 and SRC-3 coactivators. *Biochim Biophys Acta* 2012; 1823: 379–386.

Charlier TD, Ball GF, Balthazart J. Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity. *J Neurosci* 2005; 25: 906–913.

