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Accuracy of Frequency Estimates
Using the Phase Vocoder

Miller S. Puckette and Judith C. Brown

_Abstract—The phase vocoder is a well-known technique for to the dot product of two windows of the signal with the filter
dividing an audio signal into time-varying sinusoidal components kernel. We then find the component’s frequency by measuring
and estimating their frequencies and amplitudes. The accuracy the phase difference of the filter outputs at the two points.

of the frequency estimates is studied here by predicting, and . . . .
then measuring experimentally, the magnitude of errors due to The filter kernels we are interested in will be of the form

two factors: 1) interference between different components, and w[n]exp (=2mjkn/N), wherek is a bin numberN is the

2) interference due to the presence of noise in the signal. The window size, andu[r] is a window function. The filter outputs
magnitude of the error depends on the relative amplitudes of can be written in terms of the windowed short-time Fourier
the component in question and the disturbing signal, on the size transform (WSTFT) ofz[n]:

and spacing of the analysis windows, on the window function

used, and, in the case where the disturbance is due to another N—1

sinusoidal component, on the phase difference between the two. _ —2mjnk/N

The implications of these results for choosing analysis parameters Xo[M, F] = Z winlz[n + Mle ) (1)
are discussed. The case of a one-sample spacing between analysis

windows is treated in detail. Finally, we compare the phase The phase vocoder’s frequency estimate is the phase change
vocoder with the maximum likelihood frequency estimator. over an interval of timeH samples long, divided by

arg X, [M + H, k] — arg X,,[M, k]
H

n=0

(2)

I. INTRODUCTION West (H, N, M) =

HE PHASE vocoder has long been used to analyze and ) )

Tresynthesize speech and monophonic musical sountf, @ suitably chosen bin numbét* _
First introduced as a time-domain technique by Flanagan [1],/t IS natural to ask how to choos®, H, and the windoww
its modern, fast Fourier transform (FFT) based implementati&f 96t the greatest possible accuracy in the face of constraints
was worked out by Portnoff [2]. The sounds to be analyzé/&h'Ch may |n_volve time resolupon and/or computational ex-
are assumed to consist (in part) of a sum of many sinusoid@gnse: We will take the quantiy + H as our measure of
components whose frequencies and amplitudes may chaf{g¥ resolution, since..; depends ooV +H successive points
over time. When used as an analysis tool, the phase vocod@Fdhe signal. Smaller values a¥ + H might be better for
output is a time-varying list of amplitudes and frequencies &0 reasons. First, if a component's frequency and amplitude
the components; this might be used for estimating the pitdfi¢ changing with time, an accurate frequency measurement
of a musical sound as in [3], or for obtaining an additivesNould be as local as possible; the phase vocoder's output
synthesis model for a musical instrument as in [4]. As df" & given moment in time should not depend on values
analysis/resynthesis tool, the phase vocoder has been useff t§1€ input signal except in a small neighborhood of that
alter the time scale of recorded sounds, as reported in [5]-[§]0Ment. There is no easy way to quantify the inaccuracies
among others. Here we will be primarily concerned with th@at an increased analysis window size yvould introduce, bqt it
phase vocoder as an analysis tool, although our results mi@wplearly.preferable to keep the analysis as local as possible.
be of use in analysis/resynthesis applications as well. econd, if we happen to be designing a real-time system, the

We will use the phase vocoder in its FFT-based, bandpdd§put will incur more delay asv + H increases. _
configuration, as shown in Fig. 1. Lefn],n = 0,1,2,--- be On the other hand, .the accuracy _o_f (2) improves with
a discretely sampled signal containing a sinusoidal compondifreasing values ofV since the selectivity of the bandpass
of frequencyw. In effect, we use a bandpass FIR filter tunef/ter can be greater for larger values &t The accuracy also
at or nea to isolate the component. We evaluate the outptnds to increase witli since we can write

of the filter at two pointsM and M + H, where H is called
. . , West (H7 N7 M)
thehop size These two samples of the filter's output are equal 1
= _[west(]-vaM) +west(17N7M+ 1) + v
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Fig. 1. Block diagram of the phase vocoder as used for analysis.

so that we can regard the frequency estimate for larger vall®ST computation. First, if a series of results is desired, one
of H as an average of estimates for smaller value&ofWe can compute values @f...(H, N,mH) for m =0,1,2,---,
are neglecting phase-unwrapping effects for the moment; ghereby using each calculated valueXf, twice. This makes
Section VI.) Since our time resolution & + H, and since sense if the points at which results are desired correspond
uncertainty in frequency decreases with bdthand H, we to a suitable hop size. The second possibility, reported inde-
can tradeHd off with IV to get the best frequency resolutiorpendently by Brown [3] and Charpentier [9] and based on a
for a given time resolution. The time/frequency tradeoff, thaechnique of Goertzel [10], avoids the second DFT for the
is, N + H versus uncertainty in frequency, is a familiar onspecial caséd = 1. (See also [6].) If computation time is of
in signal processing. concern, the availability of these optimizations might affect
To determine the accuracy of (2), we will study haw,; our choice of N and H.
is affected by the presence of noise or additional sinusoidalin applications where the number of sinusoids present is
components in the input signal. We then verify the results @alatively small, the maximum likelihood (ML) estimator is
signals having known components. usually preferred over the phase vocoder. Here we will be
In the discrete Fourier transform (DFT) implementatioable to provide some insight into the relative performance of
of the phase vocoder, the filter kernels shown in Fig. 1 atee two.
evaluated by multiplying the input signal by the window Another technique described by Kay [11] is to estimate
functionw[n] and then taking the DFT (thereby simultaneouslthe frequency of a single sinusoid in noise as a weighted
evaluating VvV filter outputs). The computation time is oftenaverage of phase differences between successive samples of a
dominated by the time required to calculate the two DFT’'signal. Kay finds that the best weighting function is an inverted
Two optimizations are known which in effect save half thparabola, and that under suitable conditions his technique
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reduces to the ML estimate for a single sinusoid in white noiseor all of these windows, the main lobe of the Fourier
While Kay’s technique is different from the phase vocoder, wieansform is at least two bins wide, so that whéh< 1, (7)
will use his result as preliminary justification for including thegives
parabolic window in our analysis, in addition to three windows

traditionally used with the phase vocoder (Hanning, Hamming, arg W(k) = —(N = L)zk/N

Blackman—Harris). W (k)| =Wo(k). (11)
A. Terminology Il. GENERAL ERROR FORMULAS FOR THE PHASE VOCODER
We will use the unnormalized DFT defined as We will consider a complex exponential signal with ampli-
N-1 tude a, angular frequency, and initial phase, as follows:
_ —27jnk/N
FT{a[nl}[k] = 3 a[n)e™>" o] = ac e+

n=0
where k is called thebin number When using noninte- with an additive perturbing signal[n]
gral values ofk we will enclose k in parentheses as in P
“FT{z[n]}(k).” We rewrite (1) as @'[n] = z[n] + yln].
X [M, k] = FT {w[n]z[n + M]}[E]. (4) Let X,[M,k],Y,[M, K], and X [M, k] denote the corre-

. ) ) sponding WSTFT’s as in (4). In particular, we have
We will use the Hanning, Hamming, three-term Black-

man—Harris, and parabolic window functions, denoted by
wln], and with Fourier transform W < Nw)
A .

b— =
W (k) = FT {w[n]}(k). (5) 2m
. . - Here, the phase term comes from two sources: the terms in

The Hanning, Hamming, and Blackman—Harris windows az}e and § give the phase of the signafn] at the middle of
all of the form . o . ;

(2n+1) 2m(2n + 1) the window, and the term i is the window’s phase term
TERT D) 4 yeos T2 (g)  from (7).

N _ N _ _ We want to estimate the contribution of the disturbapled

for 0 < n <N and zero, otherwise. For the Hanning windowo w.; given by (2) wherek is the bin whose center frequency
we have(«, 3,v) = (0.5,0.5,0), for the Hamming window, is closest tow, as follows:

(12)

X[ M, k] = ae/(N=D((/2)=(eh/N)) 48+ M)

(13)

wln] = o — B cos

(0.54, 0.46, 0), and for the minimum-sidelobe three-term Nw 1
Blackman—Harris window, (0.423 23, 0.497 55, 0.079 22) [12]. ‘k - —| <= (14)
The Fourier transform ofv[n] is then 2m 2
W (k) = e—j(N—l)ﬂ-k/NWO(k) @) If y[n] = 0, plugging (13) into (2) gives exactly regardless of
the choice ofH and V. We will assume that\,, dominates
where Y, in the kth bin
Wo(k) =aDpy (k) + /—;(DN(k + 1)+ Dy(k - 1)) [Yu[M, k]| €| Xw[M, k]| ~ aN
+%(DN(/€+2)+DN(/€—2)) (8) |Yio[M + H k]| €alN. (15)
In other words, we are assuming that the WSTFT resolves the
and : . .
. sinusoidz[n] from the disturbance[n].
Dn(k) = _sin (k) We can now estimate the effect gfn] on wes; by consid-

sin <ﬁ> ' ering each term of (2) separately. Using the identity

The parabolic window defined as arg (A+B) = arg(4-(1+B/A)) = arg (4) +arg (1+ B/4)

» n— (N —1)/2 2 . the first term of (2) becomes
wln] =1- N2 ©) arg X,,[M + H, k]
for 0 < n< N, also satisfies (7) with = arg {Xo[M + H, k]}
1 + arg {1+—YW[M+H’I€]}
Wo(k) = NZ%(cos (4nk/N) — 4cos (2nk/N) + 3) XM+ H, k]
(N +3)rk i = arg {X,[M + H, K]}
.|:(2N—1)COST+(—2N—O) _‘_rlr‘{l_‘_yw[M""Hvk]}
(N + Drk (N = Dk ue ceHX M, K] |
ccos ————— + (2N 4+ 5)cos ~———
N N Here, we have written the total phase as the original phase
+ (2N + 1) cos NV = 3)mk . (10) Pplus a disturbance phase. To estimate the latter we use the

N assumption (15) to make an approximationz lis a complex
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number whose magnitude is small, then to ordé¢t we have Equation (16) then becomes
arg (1 4+ z) = Im (z). Applying this to the disturbance term

gives €sinusoid
Yo|[M + H, k] , < nw’)
arg —_— 7 aWol k —
s {1+engXw[M,k]} o n 0 o
o [ YolM + H1 H|X,[M, K]
~m IwHX [M, k] m {F (V=D /D)= (kM) =) Ho 8+ M 1)
1 J((N=D((«'/2)—(wk/N))+5"+ Mw' — 1)
= _Im{Y,[M+Hk —e 2
X ore el ]
. g i (@HFarg Xy [MoK])) Plugging inX,,[M, k] and¢; from (11) and (13) and simpli-
1 N—1 fying gives
=-————1Im wnlyM+H+n
i ™ 2 | (N
, n= 20 Wyl k — — ,
. I (2Enk/N ) o H parg Xu M) e 2r ) o <(w —w)H )
. sinusoid ~~ N ’ - a5
1 N aWo <k - —”)H 2
=————Im Z (wln — Hly[M + n] 2m
| X [M, K]l - ' _
n=H (W -—w)H+N-1)
. I (RHN/N)~(2mnk/N) = H—arg Xou[MA])y " C0oS 5 +6 =6
This estimate can also be used to find the effecyjaf on + MW - w))_ (18)
the second term of (2) by substituting O f&r. The total error
is thus
The result is proportional to the relative strengths of the two
€= West — W ' ' signals’ contributions to thekth bin of the WSTFT, and
o {Ye[M + H, klemi@Hte) — Y, [M, kle=%1} (16) depends on two phase terms.
H|Xo[M, K]
N+H-1
S 1M - Im{ Z wln — H]y[M + n] V. DISTURBANCE BY WHITE NOISE
Xw[M, K] n=H Here we consider the effect of adding real or complex-
. g~ I ((2mnk/N)+¢2) valued white noise. Suppose first théit] is real-valued white
N-1 ' ) noise with powew?. We will regard each sample gfn] as a
_ Z wln]y[M + n]e—]((ank/J\)+¢l)} (17) random variable with mean zero and standard deviatical
n=0 of them uncorrelated. I&[n] is a sequence of real numbers,
where for convenience we have defined the sum
1 = arg X, [M, k]
e ok > alnlyln]
2 =¢1+ |w— N . n
If we add several perturbing signalg[n],---,yp[n] to is another random variable, whose mean is again zero and

z[n], with eachy, satisfying (15), the errors introduced inwhose variance is the sum of the variances of the individual

wesr Are approximately additive. We can thus estimate tif@mples

accuracy of the phase vocoder for complex signals by breaking ) ) )

them down into simple components. To this end, we will now Ttotal — 0 Z a[n]”. (19)
calculate the contributions due to the presence of sinusoidal n

components at frequencies other tharfsee Section Ill) and

. . . For the moment we will restrict our attention to the case
white noise (see Section IV).

H < N. Evaluating the imaginary part in (17), we can estimate
the error as

[ll. DISTURBANCE BY A SINUSOID
. . . . €poise — West — W
We first consider a disturbance by a complex exponentlaf1

N-—1
signal of amplituder’, frequenf:ytu’, a,nd phase’ ~ b 1[M ol Z wlnly[M +n]
yln] = a'e T+ w5 HIH 20
so that . 2mnk RS
- sin +é1 ) — Z wln — Hly[M + n]
Yoo [M, k] = o F (N =D /2)=(xh/N)) 48+ M) N oyl

Nuo' o 2mnk
-W0<k— o ) Sln< ~ +</)2>}
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Combining like terms gives sums by integrals, as follows:
No? 1
2 ~_ v : 2
Troise FEFNGE [/0 [w(Nt)sin 27kt + ¢1)]" dt
1 = 2mnk !
e N i -2 NHOw(N(t — h))sin (2rkt
€noise H|Xw|:M, If]| [r;) UJ[TL] S111 < d)l) /h w( )w( ( )) Sln( 7 + d)l)
- 1+h
N-1 .
2mnk -sin 27kt + ¢ dt—i—/ w(N({t—h
M—i—n]—i—Z{ n]sm< N ) ( 2) 5 [ (N )
- sin (27kt 2 dt
— wln — H]sin <27r k+¢2>} [M + 7] sin 2kt + ¢2)]
H+N—1 No? ! 2
N Nt)*(1 — Akt
— > wlh—H]sin <27;$k +</>) SHZ[X (M, | UO w(Nt)*(1 = cos (4m
n=N 1
1 26y))df 2/ w(NEYw(N(t - 1))
y[M +n]|. "
- (cos(p1 — ¢p2) — cos (Amkt + 1 + P2)) dt
1+h
+ / w(N(t — h))*(1 — cos (4rkt + 2¢»)) dt
h
The variance (19) becomes We may reduce this expression to a concise value by adding

the new assumption thatbe large enough that we may ignore
terms incos (47kt) in the above integrals (since the integral
2 will have 47k in the denominator for those terms.) Using this
+ ¢1>> assumption and combining the first and last terms above, we

g 2mnk
2 . - @ OO
O noise H2|X M k]|2 [Z < 71] sin < N

get
¥ Z { lsin (2% +.01) - wln - ] I L (N2 dt — cos (61— b)
s <27f”’f ) } HM ' : /} 1 w(N#yw(N(t = h)) dt} . (20)

97n 2 In the case wherdf > NN, the calculation is the same except
. < [n — H]sin < ¢2>> ] that the cross term never appears. The result still holds if we
seth = 1, which corresponds tdi = N.
For the trigonometric window (6), this evaluates to

e N BT g
Carrying out the square of the middle term and regrouping ¢ ~ H?| X, [M, E]|? “ 2 oSl T P2
gives ' {(1 ) <a2 N 32 cos2(27rh) N v? Cos2(47rh)>
a2
, 12a8 — 383° — 4/37 in (2rh)
2 N-1 nk 2 127
o2 =— 7 Z <w[n]sin <2 (/)1>> —12ary + 163y — 342
noise = F21X,,[M, H]? | & T 7 o Y7 in (zmh)D (21)
n= 7
-9 Z [n]w[n — H]sin <27mk (/)1) wherea, 3, and~ are the window parameters. For the para-
bolic window (9) we get
[ 2mnk At ) No? 8
- S1n <T + ¢2> r;{ O noise ~ W <E — COS (¢1 — (7)2)
8 — 40h? + 403 — 8h®
2 2 .
. <w[n—H]Sin <7FT”I€+¢2>> ] < 15 )) (22)

These results hold for real-valued white noise. If we add pure
imaginary-valued white noise, we can multiply batfn] and

y[n] by j to get the same result. Complex-valued white noise
Letting » = H/N denote the relative window overlap andherefore gives twice this variance, since the disturbances are
introducing the variable = n/N, we can approximate the additive.
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and the measured interference (shown as points)..Xhaxis gives the frequency separation in bins between the original signal and the interfering one.

V. MEASURED RESULTS 6.6995 - 10~* and6.8045 - 10~* rad/sample, respectively; the

The results given above depend on three approximatiof&0 differ by 1.6%. o _
the replacement ofirg (1 + z) by Im (z) in Section II; and We tested the white-noise influence estimates (21) and (22)

in Section IV, the replacement of sums by integrals and tHgli?%r?\ Slli?un(;ﬂ ea?:éa;o LT; SfLr’én uogna C(l)gqp;ixdsl:?#;?'rgl(w'th
suppression of high-frequency terms in the integral. The ﬁrglpstributgd pseudoran?jom regl-vaI?:/ad )White noise ir¥ the
step is straightforward, but it is difficult to bound the erroFa ge[-1 ’1]. the power of’ the noise signal was thus 1/3
contributed by the other two steps. To verify these results an . '

. ; . o . . The window size/N was allowed to range over the powers
also to investigate their qualitative behavior, we ran numeric ; : )
: . o . of two between 32 and 2048, inclusively, and the hop size
simulations of the two situations considered above.

. . ., H, from 1-2048. For eachN, H) pair we measured the root
In the noise-free, interference-only case (18), the predlctﬁ% W, ) p

and onf and N, but also on the frequencies /and phases gfainst the predictions. The two almost always agree to within
both components. We took fixed valuesof= o’ = 1,N = 194: the greatest deviation for a trigonometric window was

512,M = 0,H = 64, andw = 2007 /N (the middle of the 3 504 and for the parabolic window 3.7%, both f§r= 32.
100th bin), and chosé and é’ in such a way as to maximize

the cosine term in (18). For each of the four windows under
consideration, we investigated the dependence of the phase
Vocoder’s frequency error Ow/ as |t ranged from two to We will now consider SpeCifiC cases that illustrate the above
seven bins away fromnw, i.e., 20dr/N < ' < 2147/N, res_ults, taking a fixed time resolution of + H = 1000 and

in increments of a tenth of a bin. Fig. 2 shows the predictd@fting H vary. First let

error (as curves) against the measured error (shown as points). 2'[n] = " + y[n]

The results show clearly the dominant effect of #iig term
in the numerator of (18). Also, the predicted and measurehere w is taken to be an exact bin frequency ame)] is
results agree closely. For the Hanning window, for examplesal white noise with unit power. The predicted RMS error is
the greatest absolute deviation between the predicted apmephed in Fig. 4. The parabolic window witH = 1 gives
measured results occurs at 2.4 bins, at which they eqtla¢ best results.

VI. CHOOSING N, H, AND w
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We now simplify our estimates faf = 1 and the Hanning  Doing the same for the parabolic window, we get
and parabolic windows. The value of (21) dependstbboth
explicitly and via the quantity.. We rewrite all occurrences

2 2 2
of H in terms ofh, seta = 7 = 0.5, = 0, and, noting 0~ |1+ 27: <k— &) 8a .
thath = H/N is small whenH = 1, we take the limit ash 5 27 vl (e Nw
approaches zero, giving -
Nw\?2 2 2 .
O'IQ{anning ~ |1 =+ 3<I€ - 2—;:) ] na ~ 5 The best case Is
4N W<k - _”> .
271' 2 60'
Para ~ F (23)

Becausek is the bin nearest to the peak @t the quantity

k — (Nw/2r) varies between-1/2 and 1/2; it is zero if the 5nq the worse case is 3.32 times as great. For both windows,
frequency of the sinusoid coincides with a bin frequency (thfe variance is very sensitive to the bin differenke—

best case) and is or —1/2 if the sinusoid is halfway between ., 5.y ‘we could reduce its value either by zero-padding
two bin frequencies (the worst case.) Plugging in valueB’of ¢ (ime_domain signal (so that the bins of the DFT are more
from (8) gives a best-case variance of closely spaced), or else by proceeding iteratively, using a first
) 1202 estimate ofw to suggest a fractional value &fat which we
O Hanning ~> N3 can evaluateX,, explicitly. (Here we are tacitly assuming that
the error is already small enough that the iteration is closer

and a worst-case variance approximately 2.43 times greatehan the original estimate.)
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Next we consider the case of a sinusoidal disturbance small values ofH in all the situations we have considered.)
2'[n] = eFn 4 I nt), The loss of accuracy arises because the two windows are
, . o different from zero at the window boundaries; thus, foér=
where o’ is sufficiently far fromw to be distinguished by ;1 i particular, two single samples are disproportionately
the WSTFT. The result is highly sensitive to the d'ﬁerenc\‘ﬁ/eighted in the analysis. Becausé — 1 behaves well
w' —w and to the relative phas€. The ¢’ dependence can fom the standpoint of phase unwrapping and calculation
be averaged out by replacing the cosine term of (18) by e (as we will see below), we have derived the minimum-

RMS over all values of/, equal to2~'/2. The other terms sigelobe trigonometric window of the form (6) which attains

could be estimated either in terms of an average or a Worggsro at the boundaries. Setting = « +~v = 0.5, we

case value, over various possible ranges of the frequengymerically minimized the worst-case sidelobe strength to
differencew’ — w. We have chosen to take the RMS averaggptain (o, B,7) = (0.4090,0.5,0.0910). This window gives
over two ranges of the frequency difference; this is intendedfifth trace shown in the lower plot of Fig. 5. Our proposed
to give a heuristic measure of the average disturbance byymdow gives an error of 5.81x 10~% rad/sample when
sinusoid of unknown phase and frequency. The first rangg, — 1, as compared to 3.8% 10~ for Blackman—Harris
from 47/1000 to 407/1000 rad/sample, entails situationsgnd H = 60.
where signal components might be closely spaced; the secondys with interfering white noise, the error magnitude due to
from 67/1000 to 407 /1000 rad/sample, represents a wideinterfering sinusoids is greater if the measured sinusoid lies
and more comfortable spacing. The averages were obtaimegfway between two bins than if it lies on a bin frequency,
by numerically integrating the square of (18). but here the ratios are smaller, coming from the falloffif
As seen in Fig. 5, the results are very different dependimgtween zero and 1/2.
on the range ofv — w’ used. In the first case, the optimum is Additional factors should be considered when choosthg
the Hamming window function anél = 140; for the second, and N. First, our calculations have all ignored the possibility
Blackman—Harris andd = 60. of phase unwrapping errors, which are progressively harder
In the second frequency range, we see that the Blaak- control with increasingHd. Without an analysis of the
man—Harris window does not perform especially well for vergrobability of getting this type of error, the most prudent
small values oftf (also, the Hamming window does badly forchoice might sometimes be to insist on settiig= 1, which
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Fig. 5. Predicted RMS error in radians per sample, due to a disturbing complex exponential, as a fundiowitf N + H = 1000. The RMS
average is taken over all possible phase differences and over a range of separation between the two complex exponentials (2—20 bins for the upper
graph and 3-20 bins for the lower one).

in none of the cases we have considered gave worse tipgiablem of reconstructing the signal after analysis; adding this
twice the error of the “optimal” choice. (Another possibility requirement would also place an upper boundifil3].

if computation time is no constraint, is to use (3) to get large

values ofH from smaller ones.) Here we have even presented

data wherdd > N, primarily for completeness; unless we have ~ V!l- SIMPLIFIED FORMULA FOR THE CASE H = 1

somea priori knowledge about the signal we are likely to In some situations, we wish to ugé = 1 and a trigonomet-
get unwrapping errors there. We have also not considered tiewindow. Here we can use a variant of Goertzel's technique
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[10] to simplify the calculation, as shown in [3] and [9]. (Sedf w[0] is sufficiently small we can ignore the termifV] —

also [14] for a different way to avoid redundant calculations[0]. Proceeding as in Section I, we can further simplify the
when computing more than one DFT.) In essence, the Goertestimate as shown in the first equation at the bottom of the
technique is to calculate the DFT on the point2,.---,N page.

directly from the DFT or0, 1,---, N — 1. For this section we  In the numerator we now apply the approximations

will let z[n] denote an arbitrary real or complex signal, not . )
necessarily a complex exponential. We have n—n"" ~2rj/N

772 — 77_2 rdrj /N

FT{z[n+ 1]}[K]
N-1 ' and in the denominator we simply replace termspinwith
= Z xn + 1)e”Frikn/N unity, finally giving us the second equation at the bottom of
n=0 the page.
N
_ Z x[n]e—Qﬂ'jk(n—l)/N
= VIIl. COMPARISON WITH MAXIMUM
N LIKELIHOOD ESTIMATION OF FREQUENCY
= 2rIk/N Zx[n]e_%jk"m In applications where the number of sinusoids present is
n=1 relatively small, the ML estimator is often used to determine
2mih/N gl _2mikn/N their frequencies. This was first done for a single sinusoid in
=e™ > znlem + z[N] - (0] white noise by Rife and Boorstyn [15]; see also [16]. They
, n=0 derive the Cramer—Rao (CR) lower bound for the variance
= M NIFT {x[n]}[k] + 2[N] — 2[0]]. (24) of any possible unbiased estimator of the frequency (and also

i , phase and amplitude.) Here, the noise component is taken to be
We can use this _to Ca'CP'ate two WST_FTX’W[M k] and complex Gaussian white noise whose real and imaginary parts
Xy[M + 1, k], using a single fast Fourier transform (FFT ach have powes?. Except when the signal to noise ratio
calculation and applying the windows in the frequency doma"Q very poor, the maximum likelihood estimator’s variance is
via a three or five point convolution. In situations Wher%hown to achieve the CR lower bound:
the FFT calculation dominates the computation time, we can

thereby reduce it almost in half. Letting s 1207
OCR = NE
X[k] =FT{zn]} K] , o , _
_ wji/N For a single sinusoid in white noise as in Section IV, the phase
m=e vocoder’s frequency estimate is also unbiased, so it must obey
we convolveX [k] with W[k] from (7) and (8), giving the CR bound. The estimate (23) shows that, if we take a
parabolic window,H = 1, andw centered on an FFT bin,
FT{w[n]z[n]}K] the phase vocoder actually attains the CR bound; the factor of
=~ N=D¥aX[k] - B/2(nX [k — 1]+~ X[k +1]) two difference comes from our having used real, not complex,
2 —2 white noise.
/20 Xk = A 40 Xk + 2] The ML technique has been tested on signals with two
Applying (24), the frequency estimate (2) becomes or three components [17] whose frequencies are low-order
_ polynomial functions of time. Except in singular cases, the
West =2k /N + arg [20X k] = B(n~ X[k — 1] CR bound is still attained by the ML estimate. The literature
+0X[E+1]) + (2 X[k - 2]+ ° X[k + 2]) does not indicate how this technique would scale to situations
+ 2w[0](z[N] = z[0])] — arg [2aX [K] involving many sinusoids (typical of phase vocoder applica-

— BnXTk — ~l1y 2y () — tions), either theoretically or in terms of numerical tractability.
A X[k =1l +n [+ 1) + 70" X[k = 2] Thus we compare the two methods for small numbers of

+ 02 X[k +2))]. sinusoids.

20X [k] = B X[k — 1] + nX[k + 1)) +v(n72X[k = 2] + n? X[k + 2])}
20X [k] = X[k = 1]+ 1 X[k + 1)) + vy(n2 X[k = 2] + n2X[k + 2])
B~ =Xk +1] = X[k = 1]) +v(* =) X[k +2] - X[k - 2]) }
20X[k] = BnX[k = 1]+ 77 X[k + 1)) +v(n?2 X[k = 2] + n2X[k+2]) |

West A 21k /N + arg [

~27k/N + Im [

B(X[k = 1] = X[k +1]) — 29(X[k — 2] — X[k +2]) D

West, % 2 /N <’“ +Re [QaX[k] — B(X[k = 1]+ X[k +1]) + (X [k = 2] + X[k +2])
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When more than one sinusoid is present, the ML estimatgs] J. A. Moorer, “The use of the phase vocoder in computer music

i i applications,”J. Audio Eng. Sogcvol. 26, pp. 42-45, Jan./Feb. 1976.
acts quite differently from the phase vocoder. For exampl 7] T. Wishart, “The composition of Vox-5,Comput. Music J.vol. 12, pp.

in the case where there is no noise component at all, the ML 21_57 winter 198s.
error is zero as long as the signal obeys the model and meds M. S. Puckette, “Phase-locked Vocoder,”Rmoc. IEEE ASSP Workshop

; ; ; " on Applications of Signal Processing to Audio and Acousti@85.
appropriate nonsmgu'a”ty conditions. As we have seen abov%ﬂ F. J. Charpentier, “Pitch detection using the short-term phase spectrum,”

even if the frequencies of the components of a sound do not' in Proc. Int. Conf. on Acoustics, Speech, and Signal Procesdi98s,
vary at all with time, the phase vocoder will make errors  pp. 113-116.

L - . . ] A. V. Oppenheim and R. W. Schafdbjscrete-Time Signal Processing
in its measurement of their frequencies due to interferentd Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 585-587.

between components. Since these errors are deterministic @ngl S. Kay, “A fast and accurate single frequency estimattEE Trans.
not random, we cannot even say that the phase vocoder fi¢oustics Speech, and Signal Processing. 37, pp. 1987-1990, Dec.

provides an unbiased estimate of frequency' . [12] F. J. Harris, “On the use of windows for harmonic analysis with the
On the other hand, the phase vocoder is usually used discrete Fourier transform,” ifProc. |IEEE vol. 66, pp. 51-83, Jan.
on signals which do not obey a low-dimensional mod? 3 1978.

. . J. B. Allen, “Short term spectral analysis, synthesis, and modification
such as those on which ML has been tested. While many" py giscrete Fourier transform [EEE Trans. Acoust., Speech, Signal

signal processing applications might adhere quite well to the Processingvol. ASSP-25, pp. 235-238, June 1977.

; ; : D. E. Paneras, R. Mani, and S. H. Nawab, “STFT Computation using
assumptions made in the ML papers, music and speech do H& pruned FFT algorithms [EEE Signal Processing Letwol. 1, pp. 61-63,

really follow any known model at all. In the literature on phase  apr. 1994.
vocoders, we never find explicit assumptions about the mod#&j] D. C. Rife and R. R. Boorstyn, “Single-tone parameter estimation from

; . ; ; - - discrete-time observations|EEE Trans. Inform. Theoryvol. 20, pp.
of the signal; the closest thing to it that we find (in [3], for  5g)" 5gg Sept. 1974.

example) is that the frequencies of the components of a souné B. James and B. D. O. Anderson, “Characterization of threshold for

change slowly relative to the sample rate. single tone maximum likelihood frequency estimatioffEE Trans.

. . . Signal Processingvol. 43, pp. 817-821, Mar. 1995.
The model we have assumed here is a fairly loose one: TH®, g Friediander and J. M. Francos, “Estimation of amplitude and phase

signal must differ from a sinusoid by a quantity (12) which  parameters of multicomponent signaltfEE Trans. Signal Processing
does not interfere much with it in its spectral neighborhood Vol 43. pp. 917-926, Mar. 1995.

(15). This model allows for sinusoidal components with time-

varying amplitudes and frequencies as long as the deviation

within the space of the analygg window is 'relatlvely Small\?lillers. Puckette received the B. S. degree from the Massachusetts Institute
In contrast, the frequency variations treated in [17] may haye Technology, Cambridge, in 1980 and the Ph.D. degree from Harvard
greater magnitude but fewer degrees of freedom. University, Cambridge, MA, in 1986, both in mathematics.

. . e joined IRCAM Paris, France, and wrote the Max computer program.
Whereas the ML technique assumes that the dISturbanC?—rgm 1979 to 1986, he also worked on real-time techniques for live music

Gaussian white noise, in speech and music many other typesormance at the Massachusetts Institute of Technology (MIT) Media
of disturbing signals can be present: nonstationarity either ligboratory, Cambridge. In September 1994, he joined the Department of

: [ : . . - Music, University of California at San Diego, La Jolla, CA, where he
the desired component or in mterferlng ones; nonwhite noi 'now Professor of music. His current research interests include human-

or time-modulated noise as occurs in some wind instrumenigchine interaction strategies and real-time audio analysis, synthesis, and
Here, the ML technique can not even be applied until a modwwetialization.

: : : - r. Puckette was the top scorer in the 1979-1980 William Lowell Putnam
IS found, for the ‘?"Stf”ba”.ce- In these situations, the phaﬁghemaﬁcs Competition, and was awarded Putnam and NSF fellowships to
vocoder's generality is an important advantage. study mathematics at MIT and Harvard. He also vikeyboardmagazine's

1990 Software Innovation of the Year Award.
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