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Accuracy of Frequency Estimates
Using the Phase Vocoder

Miller S. Puckette and Judith C. Brown

Abstract—The phase vocoder is a well-known technique for
dividing an audio signal into time-varying sinusoidal components
and estimating their frequencies and amplitudes. The accuracy
of the frequency estimates is studied here by predicting, and
then measuring experimentally, the magnitude of errors due to
two factors: 1) interference between different components, and
2) interference due to the presence of noise in the signal. The
magnitude of the error depends on the relative amplitudes of
the component in question and the disturbing signal, on the size
and spacing of the analysis windows, on the window function
used, and, in the case where the disturbance is due to another
sinusoidal component, on the phase difference between the two.
The implications of these results for choosing analysis parameters
are discussed. The case of a one-sample spacing between analysis
windows is treated in detail. Finally, we compare the phase
vocoder with the maximum likelihood frequency estimator.

I. INTRODUCTION

T HE PHASE vocoder has long been used to analyze and
resynthesize speech and monophonic musical sounds.

First introduced as a time-domain technique by Flanagan [1],
its modern, fast Fourier transform (FFT) based implementation
was worked out by Portnoff [2]. The sounds to be analyzed
are assumed to consist (in part) of a sum of many sinusoidal
components whose frequencies and amplitudes may change
over time. When used as an analysis tool, the phase vocoder’s
output is a time-varying list of amplitudes and frequencies of
the components; this might be used for estimating the pitch
of a musical sound as in [3], or for obtaining an additive-
synthesis model for a musical instrument as in [4]. As an
analysis/resynthesis tool, the phase vocoder has been used to
alter the time scale of recorded sounds, as reported in [5]–[8],
among others. Here we will be primarily concerned with the
phase vocoder as an analysis tool, although our results might
be of use in analysis/resynthesis applications as well.

We will use the phase vocoder in its FFT-based, bandpass
configuration, as shown in Fig. 1. Let be
a discretely sampled signal containing a sinusoidal component
of frequency In effect, we use a bandpass FIR filter tuned
at or near to isolate the component. We evaluate the output
of the filter at two points, and where is called
thehop size. These two samples of the filter’s output are equal
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to the dot product of two windows of the signal with the filter
kernel. We then find the component’s frequency by measuring
the phase difference of the filter outputs at the two points.
The filter kernels we are interested in will be of the form

where is a bin number, is the
window size, and is a window function. The filter outputs
can be written in terms of the windowed short-time Fourier
transform (WSTFT) of

(1)

The phase vocoder’s frequency estimate is the phase change
over an interval of time samples long, divided by

(2)

for a suitably chosen bin number1

It is natural to ask how to choose and the window
to get the greatest possible accuracy in the face of constraints
which may involve time resolution and/or computational ex-
pense. We will take the quantity as our measure of
time resolution, since depends on successive points
of the signal. Smaller values of might be better for
two reasons. First, if a component’s frequency and amplitude
are changing with time, an accurate frequency measurement
should be as local as possible; the phase vocoder’s output
for a given moment in time should not depend on values
of the input signal except in a small neighborhood of that
moment. There is no easy way to quantify the inaccuracies
that an increased analysis window size would introduce, but it
is clearly preferable to keep the analysis as local as possible.
Second, if we happen to be designing a real-time system, the
output will incur more delay as increases.

On the other hand, the accuracy of (2) improves with
increasing values of since the selectivity of the bandpass
filter can be greater for larger values of The accuracy also
tends to increase with since we can write

(3)

1Portnoff and others use the lowpass formulation of the phase vocoder
instead of the bandpass one; this makes it easier to consider the effect of time
decimation of the phase vocoder’s output. Our use of the bandpass formulation
here simplifies our calculations; our results are independent of the choice of
formulation since!est is.
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Fig. 1. Block diagram of the phase vocoder as used for analysis.

so that we can regard the frequency estimate for larger values
of as an average of estimates for smaller values of(We
are neglecting phase-unwrapping effects for the moment; see
Section VI.) Since our time resolution is and since
uncertainty in frequency decreases with bothand we
can trade off with to get the best frequency resolution
for a given time resolution. The time/frequency tradeoff, that
is, versus uncertainty in frequency, is a familiar one
in signal processing.

To determine the accuracy of (2), we will study how
is affected by the presence of noise or additional sinusoidal
components in the input signal. We then verify the results on
signals having known components.

In the discrete Fourier transform (DFT) implementation
of the phase vocoder, the filter kernels shown in Fig. 1 are
evaluated by multiplying the input signal by the window
function and then taking the DFT (thereby simultaneously
evaluating filter outputs). The computation time is often
dominated by the time required to calculate the two DFT’s.
Two optimizations are known which in effect save half the

DFT computation. First, if a series of results is desired, one
can compute values of for
thereby using each calculated value of twice. This makes
sense if the points at which results are desired correspond
to a suitable hop size. The second possibility, reported inde-
pendently by Brown [3] and Charpentier [9] and based on a
technique of Goertzel [10], avoids the second DFT for the
special case (See also [6].) If computation time is of
concern, the availability of these optimizations might affect
our choice of and

In applications where the number of sinusoids present is
relatively small, the maximum likelihood (ML) estimator is
usually preferred over the phase vocoder. Here we will be
able to provide some insight into the relative performance of
the two.

Another technique described by Kay [11] is to estimate
the frequency of a single sinusoid in noise as a weighted
average of phase differences between successive samples of a
signal. Kay finds that the best weighting function is an inverted
parabola, and that under suitable conditions his technique
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reduces to the ML estimate for a single sinusoid in white noise.
While Kay’s technique is different from the phase vocoder, we
will use his result as preliminary justification for including the
parabolic window in our analysis, in addition to three windows
traditionally used with the phase vocoder (Hanning, Hamming,
Blackman–Harris).

A. Terminology

We will use the unnormalized DFT defined as

where is called the bin number. When using noninte-
gral values of we will enclose in parentheses as in
“ ” We rewrite (1) as

(4)

We will use the Hanning, Hamming, three-term Black-
man–Harris, and parabolic window functions, denoted by

and with Fourier transform

(5)

The Hanning, Hamming, and Blackman–Harris windows are
all of the form

(6)

for and zero, otherwise. For the Hanning window
we have for the Hamming window,
(0.54, 0.46, 0), and for the minimum-sidelobe three-term
Blackman–Harris window, (0.423 23, 0.497 55, 0.079 22) [12].
The Fourier transform of is then

(7)

where

(8)

and

The parabolic window defined as

(9)

for also satisfies (7) with

(10)

For all of these windows, the main lobe of the Fourier
transform is at least two bins wide, so that when , (7)
gives

(11)

II. GENERAL ERROR FORMULAS FOR THEPHASE VOCODER

We will consider a complex exponential signal with ampli-
tude angular frequency and initial phase , as follows:

with an additive perturbing signal

(12)

Let and denote the corre-
sponding WSTFT’s as in (4). In particular, we have

(13)

Here, the phase term comes from two sources: the terms in
and give the phase of the signal at the middle of

the window, and the term in is the window’s phase term
from (7).

We want to estimate the contribution of the disturbance
to given by (2) where is the bin whose center frequency
is closest to , as follows:

(14)

If plugging (13) into (2) gives exactly regardless of
the choice of and We will assume that dominates

in the th bin

(15)

In other words, we are assuming that the WSTFT resolves the
sinusoid from the disturbance

We can now estimate the effect of on by consid-
ering each term of (2) separately. Using the identity

the first term of (2) becomes

Here, we have written the total phase as the original phase
plus a disturbance phase. To estimate the latter we use the
assumption (15) to make an approximation: Ifis a complex
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number whose magnitude is small, then to order we have
Applying this to the disturbance term

gives

This estimate can also be used to find the effect of on
the second term of (2) by substituting 0 for The total error
is thus

(16)

(17)

where for convenience we have defined

If we add several perturbing signals to
with each satisfying (15), the errors introduced in

are approximately additive. We can thus estimate the
accuracy of the phase vocoder for complex signals by breaking
them down into simple components. To this end, we will now
calculate the contributions due to the presence of sinusoidal
components at frequencies other than(see Section III) and
white noise (see Section IV).

III. D ISTURBANCE BY A SINUSOID

We first consider a disturbance by a complex exponential
signal of amplitude frequency and phase

so that

Equation (16) then becomes

Plugging in and from (11) and (13) and simpli-
fying gives

(18)

The result is proportional to the relative strengths of the two
signals’ contributions to the th bin of the WSTFT, and
depends on two phase terms.

IV. DISTURBANCE BY WHITE NOISE

Here we consider the effect of adding real or complex-
valued white noise. Suppose first that is real-valued white
noise with power We will regard each sample of as a
random variable with mean zero and standard deviationall
of them uncorrelated. If is a sequence of real numbers,
the sum

is another random variable, whose mean is again zero and
whose variance is the sum of the variances of the individual
samples

(19)

For the moment we will restrict our attention to the case
Evaluating the imaginary part in (17), we can estimate

the error as
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Combining like terms gives

The variance (19) becomes

Carrying out the square of the middle term and regrouping
gives

Letting denote the relative window overlap and
introducing the variable we can approximate the

sums by integrals, as follows:

We may reduce this expression to a concise value by adding
the new assumption thatbe large enough that we may ignore
terms in in the above integrals (since the integral
will have in the denominator for those terms.) Using this
assumption and combining the first and last terms above, we
get

(20)

In the case where the calculation is the same except
that the cross term never appears. The result still holds if we
set which corresponds to

For the trigonometric window (6), this evaluates to

(21)

where and are the window parameters. For the para-
bolic window (9) we get

(22)

These results hold for real-valued white noise. If we add pure
imaginary-valued white noise, we can multiply both and

by to get the same result. Complex-valued white noise
therefore gives twice this variance, since the disturbances are
additive.
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Fig. 2. Predicted worst-case interference of one sinusoidal component in the phase vocoder’s frequency estimate for a second component (shown as curves)
and the measured interference (shown as points). TheX axis gives the frequency separation in bins between the original signal and the interfering one.

V. MEASURED RESULTS

The results given above depend on three approximations:
the replacement of by in Section II; and
in Section IV, the replacement of sums by integrals and the
suppression of high-frequency terms in the integral. The first
step is straightforward, but it is difficult to bound the error
contributed by the other two steps. To verify these results and
also to investigate their qualitative behavior, we ran numerical
simulations of the two situations considered above.

In the noise-free, interference-only case (18), the predicted
error depends not only on the relative amplitudes of the signals
and on and but also on the frequencies and phases of
both components. We took fixed values of

and (the middle of the
100th bin), and chose and in such a way as to maximize
the cosine term in (18). For each of the four windows under
consideration, we investigated the dependence of the phase
vocoder’s frequency error on as it ranged from two to
seven bins away from i.e.,
in increments of a tenth of a bin. Fig. 2 shows the predicted
error (as curves) against the measured error (shown as points).
The results show clearly the dominant effect of the term
in the numerator of (18). Also, the predicted and measured
results agree closely. For the Hanning window, for example,
the greatest absolute deviation between the predicted and
measured results occurs at 2.4 bins, at which they equal

and rad/sample, respectively; the
two differ by 1.6%.

We tested the white-noise influence estimates (21) and (22)
using a signal equal to the sum of a complex sinusoid (with
unit amplitude and angular frequency and uniformly
distributed, pseudorandom, real-valued white noise in the
range the power of the noise signal was thus 1/3.
The window size was allowed to range over the powers
of two between 32 and 2048, inclusively, and the hop size

from 1–2048. For each pair we measured the root
mean squared (RMS) error of the phase vocoder’s frequency
estimate over 10 000 trials. Fig. 3 shows the results plotted
against the predictions. The two almost always agree to within
1%; the greatest deviation for a trigonometric window was
2.2%, and for the parabolic window 3.7%, both for

VI. CHOOSING AND

We will now consider specific cases that illustrate the above
results, taking a fixed time resolution of and
letting vary. First let

where is taken to be an exact bin frequency and is
real white noise with unit power. The predicted RMS error is
graphed in Fig. 4. The parabolic window with gives
the best results.
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Fig. 3. Predicted RMS error of the phase vocoder’s frequency measurement due to white noise (shown as curves), and the measured RMS error (shown
as points), plotted against the hop sizeH:

We now simplify our estimates for and the Hanning
and parabolic windows. The value of (21) depends onboth
explicitly and via the quantity We rewrite all occurrences
of in terms of set and, noting
that is small when we take the limit as
approaches zero, giving

Because is the bin nearest to the peak at the quantity
varies between 1/2 and 1/2; it is zero if the

frequency of the sinusoid coincides with a bin frequency (the
best case) and is or 1/2 if the sinusoid is halfway between
two bin frequencies (the worst case.) Plugging in values of
from (8) gives a best-case variance of

and a worst-case variance approximately 2.43 times greater.

Doing the same for the parabolic window, we get

The best case is

(23)

and the worse case is 3.32 times as great. For both windows,
the variance is very sensitive to the bin difference

We could reduce its value either by zero-padding
the time-domain signal (so that the bins of the DFT are more
closely spaced), or else by proceeding iteratively, using a first
estimate of to suggest a fractional value of at which we
can evaluate explicitly. (Here we are tacitly assuming that
the error is already small enough that the iteration is closer
than the original estimate.)
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Fig. 4. Predicted RMS error due to white noise in rad/sample, as a function of hop sizeH; keepingN + H = 1000 constant. (Both the curves
and the points show predicted values.)

Next we consider the case of a sinusoidal disturbance

where is sufficiently far from to be distinguished by
the WSTFT. The result is highly sensitive to the difference

and to the relative phase The dependence can
be averaged out by replacing the cosine term of (18) by its
RMS over all values of equal to The other terms
could be estimated either in terms of an average or a worst-
case value, over various possible ranges of the frequency
difference We have chosen to take the RMS average
over two ranges of the frequency difference; this is intended
to give a heuristic measure of the average disturbance by a
sinusoid of unknown phase and frequency. The first range,
from to rad/sample, entails situations
where signal components might be closely spaced; the second,
from to rad/sample, represents a wider
and more comfortable spacing. The averages were obtained
by numerically integrating the square of (18).

As seen in Fig. 5, the results are very different depending
on the range of used. In the first case, the optimum is
the Hamming window function and for the second,
Blackman–Harris and

In the second frequency range, we see that the Black-
man–Harris window does not perform especially well for very
small values of (also, the Hamming window does badly for

small values of in all the situations we have considered.)
The loss of accuracy arises because the two windows are
different from zero at the window boundaries; thus, for

in particular, two single samples are disproportionately
weighted in the analysis. Because behaves well
from the standpoint of phase unwrapping and calculation
time (as we will see below), we have derived the minimum-
sidelobe trigonometric window of the form (6) which attains
zero at the boundaries. Setting we
numerically minimized the worst-case sidelobe strength to
obtain This window gives
a fifth trace shown in the lower plot of Fig. 5. Our proposed
window gives an error of 5.81 10 rad/sample when

as compared to 3.89 10 for Blackman–Harris
and

As with interfering white noise, the error magnitude due to
interfering sinusoids is greater if the measured sinusoid lies
halfway between two bins than if it lies on a bin frequency,
but here the ratios are smaller, coming from the falloff in
between zero and 1/2.

Additional factors should be considered when choosing
and First, our calculations have all ignored the possibility
of phase unwrapping errors, which are progressively harder
to control with increasing Without an analysis of the
probability of getting this type of error, the most prudent
choice might sometimes be to insist on setting which
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Fig. 5. Predicted RMS error in radians per sample, due to a disturbing complex exponential, as a function ofH with N + H = 1000: The RMS
average is taken over all possible phase differences and over a range of separation between the two complex exponentials (2–20 bins for the upper
graph and 3–20 bins for the lower one).

in none of the cases we have considered gave worse than
twice the error of the “optimal” choice. (Another possibility,
if computation time is no constraint, is to use (3) to get large
values of from smaller ones.) Here we have even presented
data where primarily for completeness; unless we have
somea priori knowledge about the signal we are likely to
get unwrapping errors there. We have also not considered the

problem of reconstructing the signal after analysis; adding this
requirement would also place an upper bound on[13].

VII. SIMPLIFIED FORMULA FOR THE CASE

In some situations, we wish to use and a trigonomet-
ric window. Here we can use a variant of Goertzel’s technique
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[10] to simplify the calculation, as shown in [3] and [9]. (See
also [14] for a different way to avoid redundant calculations
when computing more than one DFT.) In essence, the Goertzel
technique is to calculate the DFT on the points
directly from the DFT on For this section we
will let denote an arbitrary real or complex signal, not
necessarily a complex exponential. We have

(24)

We can use this to calculate two WSTFT’s, and
using a single fast Fourier transform (FFT)

calculation and applying the windows in the frequency domain
via a three or five point convolution. In situations where
the FFT calculation dominates the computation time, we can
thereby reduce it almost in half. Letting

we convolve with from (7) and (8), giving

Applying (24), the frequency estimate (2) becomes

If is sufficiently small we can ignore the term in
Proceeding as in Section II, we can further simplify the

estimate as shown in the first equation at the bottom of the
page.

In the numerator we now apply the approximations

and in the denominator we simply replace terms inwith
unity, finally giving us the second equation at the bottom of
the page.

VIII. C OMPARISON WITH MAXIMUM

LIKELIHOOD ESTIMATION OF FREQUENCY

In applications where the number of sinusoids present is
relatively small, the ML estimator is often used to determine
their frequencies. This was first done for a single sinusoid in
white noise by Rife and Boorstyn [15]; see also [16]. They
derive the Cramer–Rao (CR) lower bound for the variance
of any possible unbiased estimator of the frequency (and also
phase and amplitude.) Here, the noise component is taken to be
complex Gaussian white noise whose real and imaginary parts
each have power Except when the signal to noise ratio
is very poor, the maximum likelihood estimator’s variance is
shown to achieve the CR lower bound:

For a single sinusoid in white noise as in Section IV, the phase
vocoder’s frequency estimate is also unbiased, so it must obey
the CR bound. The estimate (23) shows that, if we take a
parabolic window, and centered on an FFT bin,
the phase vocoder actually attains the CR bound; the factor of
two difference comes from our having used real, not complex,
white noise.

The ML technique has been tested on signals with two
or three components [17] whose frequencies are low-order
polynomial functions of time. Except in singular cases, the
CR bound is still attained by the ML estimate. The literature
does not indicate how this technique would scale to situations
involving many sinusoids (typical of phase vocoder applica-
tions), either theoretically or in terms of numerical tractability.
Thus we compare the two methods for small numbers of
sinusoids.
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When more than one sinusoid is present, the ML estimator
acts quite differently from the phase vocoder. For example,
in the case where there is no noise component at all, the ML
error is zero as long as the signal obeys the model and meets
appropriate nonsingularity conditions. As we have seen above,
even if the frequencies of the components of a sound do not
vary at all with time, the phase vocoder will make errors
in its measurement of their frequencies due to interference
between components. Since these errors are deterministic and
not random, we cannot even say that the phase vocoder
provides an unbiased estimate of frequency.

On the other hand, the phase vocoder is usually used
on signals which do not obey a low-dimensional model
such as those on which ML has been tested. While many
signal processing applications might adhere quite well to the
assumptions made in the ML papers, music and speech do not
really follow any known model at all. In the literature on phase
vocoders, we never find explicit assumptions about the model
of the signal; the closest thing to it that we find (in [5], for
example) is that the frequencies of the components of a sound
change slowly relative to the sample rate.

The model we have assumed here is a fairly loose one: The
signal must differ from a sinusoid by a quantity (12) which
does not interfere much with it in its spectral neighborhood
(15). This model allows for sinusoidal components with time-
varying amplitudes and frequencies as long as the deviation
within the space of the analysis window is relatively small.
In contrast, the frequency variations treated in [17] may have
greater magnitude but fewer degrees of freedom.

Whereas the ML technique assumes that the disturbance is
Gaussian white noise, in speech and music many other types
of disturbing signals can be present: nonstationarity either in
the desired component or in interfering ones; nonwhite noise;
or time-modulated noise as occurs in some wind instruments.
Here, the ML technique can not even be applied until a model
is found for the disturbance. In these situations, the phase
vocoder’s generality is an important advantage.
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