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SUMMARY

Adult-born neurons are incorporated into brain circuits in the crayfish Procamba-
rus clarkii, as in many vertebrate and invertebrate species. Adult neurogenesis
depends on several conserved features, including the presence of neurogenic
niches housing progenitor cells and the expansion, migration, and differentiation
of their daughters, the neural precursor cells. However, in contrast tomammalian
species, the progenitors initiating the neurogenic lineage in P. clarkii do not un-
dergo long-term self-renewal. A central question is the mode of replenishment
of these cells. Experiments have shown that hemocytes generated by the immune
system, and not other cell types, are attracted to and incorporated into the niche.
The present studies highlight the interdependency of the immune and nervous
systems in the generation of adult-born neurons, by demonstrating that hyaline
hemocytes are the probable neural progenitor cells, and that serotonin and the
cytokine astakine 1 regulate both immune function and adult neurogenesis.

INTRODUCTION

New neurons are born and incorporated into circuits in the adult brains of many vertebrate and invertebrate

organisms. In decapod crustaceans, new neurons are added to visual areas, as well as to two groups of

brain cells (Clusters 9 and 10) containing local and projection neurons that innervate the olfactory and

accessory lobe pathways (Beltz and Benton, 2017).

The cellular lineage producing the adult-born neurons in Clusters 9 and 10 has been identified in Procam-

barus clarkii (Sullivan et al., 2007; Song et al., 2009; Brenneis and Beltz, 2020). The bipolar neural progen-

itors reside in a neurogenic niche located on the ventral surface of the brain that is closely associated with

the vasculature (Figure 1A); each progenitor cell has a short process that extends to a vascular cavity in the

niche, and a long process that extends to either Cluster 9 or 10 (Sullivan et al., 2007). Unlike traditional stem

cells, however, these progenitors do not undergo long-term self-renewal, as there is no evidence for reten-

tion of proliferation markers (e.g., 5-bromo-20-deoxyuridine, BrdU; 5-ethynyl-20-deoxyuridine, EdU) in the

niche (Benton et al., 2011, 2013). The progenitor cells, which divide infrequently, undergo symmetrical di-

visions when they are positioned adjacent to the vascular cavity (Brenneis and Beltz, 2020). Daughters of

these divisions subsequently undergo several slightly asymmetric divisions, and these clones along with

their mother cells migrate along fibrous streams formed by the long processes of niche progenitor cells

(Brenneis and Beltz, 2020). Once these cells reach proliferation zones in Cluster 9 or 10, they divide again

before differentiating into neurons (Sullivan and Beltz, 2005; Kim et al., 2014).

Although the niche progenitor cells in P. clarkii do not undergo long-term self-renewal, these cells (�300 in

adults) are never depleted and neurons continue to be generated throughout the relatively long lives (up

to �9 years; Scalici et al., 2010; Chucholl, 2011) of these animals (Zhang et al., 2009). We therefore

concluded that the niche is not a closed system; the pool of neural progenitors must be replenished

from an extrinsic source (Benton et al., 2011). Such an extrinsic source was confirmed by experiments in

which crayfish received a single injection of BrdU, and the presence of BrdU-labeled cells in the niche

was observed over a three-week period; these studies showed two BrdU labeling peaks, the first associated

with intrinsic cells labeled in the niche at the time of BrdU injection. Following a ‘‘gap’’ of a few days when

no labeled cells were observed in the niche, the second peak of BrdU-labeled niche cells occurred, several
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Figure 1. Cellular dynamics in the immune system tissues are compared

An injection of BrdU was given to a group of crayfish on day 0 and animals euthanized on the days specified in the graphs.

Average percentages of BrdU-labeled APC (B) and HPT (C) cells and standard deviations are shown (B, C, D).

(A) (Top) The immune system (blue) is located in the anterior, dorsal region of crayfish, surrounding the stomach. (Middle)

Illustration of dissected tissue regions and sampling sites in the two parts of the hematopoietic system: the APC and HPT.

The APC is located just posterior to the brain, surrounding and extending away from the cor frontale (CF). In the APC, four

images were taken per animal, bilaterally at regions adjacent to the muscles of the CF (locations circled in purple). In the

HPT, which is located posterior to the APC, two images were taken per animal (locations circled in red) at the posterior

margin of the HPT, adjacent to the dorsal artery. (Bottom) Neurogenic niches that generate adult-born neurons are

located bilaterally on the ventral surface of the brain, just beneath the sheath that surrounds the brain. One niche is

represented diagrammatically, illustrating the position of the niche and migratory streams, and locations of some of the

mitotic divisions in the neural lineage (curved black arrows). The direction of movement of the neural precursors in the

migratory streams, toward brain Clusters 9 and 10, is indicated (grey arrows).

(B) An average of 40% of APC cells in the sampled regions were BrdU-positive on day 1. The mean percentage of BrdU-

labeled cells in the APC (green-shaded graph area) then decreased exponentially (dashed regression line) over the next
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Figure 1. Continued

several days, reaching zero by 14 days post-injection. Confocal images are representative of APC labeling on days 1, 3,

and 5. Propidium iodide (cyan); BrdU (red). N = # crayfish, each with multiple counting areas in each animal

(see Methods): sampling days 1–2, n = 8; day 3, n = 6; day 4, n = 5; day 5, n = 6; day 8, n = 3; day 10, n = 4; day 14, n = 4;

day 21, n = 4. R2 and Y exponential functions are indicated. Error bars indicate standard deviations.

(C) In the HPT, the average percentage of BrdU-labeled cells remains at �20% for the first three sampling days following

BrdU injection, then falls to near zero between days 3 and 5. The dashed line represents a sigmoidal decay, which best fits

these data. Images show BrdU labeling on days 1, 3, and 5 post-BrdU injection. Propidium iodide (cyan) and BrdU (red).

N = # crayfish, with multiple counting areas in each animal (see Methods): sampling day 1, n = 5; day 2, n = 4; day 3, n = 3;

day 4, n = 5; day 5, n = 4; day 6, n = 5; day 7, n = 6; day 8, n = 2; day 10, n = 2; day 14, n = 3; day 20, n = 4. R2 and Y

exponential functions are indicated. Error bars indicate standard deviations.

(D) The % chance of finding a BrdU-labeled cell in the neurogenic niche after a single injection of BrdU on day 0 is plotted

(purple shaded graph; adapted from Benton et al., 2014). The proliferation dynamics (% BrdU-labeling) in the APC (green;

shown also in Figure 1B) and HPT (blue; shown also in Figure 1C) are overlaid on the niche graph. Two separate groups of

animals were used to generate the niche graph (purple), and APC/HPT graphs (green and blue). BrdU-labeled cells are

found in the niche (purple) on days 1–4 (peak A) and again on days 8–14 post-BrdU injection (see Benton et al., 2014 for

details). The % of BrdU-labeled cells in the APC and HPT decreases as cells from these tissues are released into the

circulation. Scale bars: (B) and (C) 30 mm.
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days after the BrdU clearing time; therefore, newly labeled cells could not explain this delayed peak. We

came to the conclusion that cells labeled in the source tissue – and later released and incorporated into

the niche – were responsible for this later peak in labeled cells (Benton et al., 2014).

In vitro (Benton et al., 2011) and in vivo (Benton et al., 2014) studies have demonstrated that cells extracted

from the hemolymph (blood), but not other cell types, are attracted to the niche. Following the adoptive

transfer of EdU-labeled hemocytes from donor to recipient crayfish, EdU-labeled cells can be found in

the niche by day 3 following transfer; by seven weeks after transfer, labeled cells in Clusters 9 and 10 ex-

press transmitters appropriate for neurons in these cell clusters (Benton et al., 2014). Because circulating

hemocytes originate in hematopoietic tissues, we concluded that the niche cells are replenished by the im-

mune system (Benton et al., 2014).

In the experiments reported here, the immune source of neural progenitor cells was further tested by ex-

periments in which recombinant-astakine 1 (r-AST1; gift of Irene Söderhäll, Uppsala University, Sweden), a

crustacean prokineticin-family cytokine (Söderhäll et al., 2005), was injected into crayfish along with BrdU.

AST1 promotes the differentiation and release of hemocytes from the immune system in P. clarkii (Benton

et al., 2014), as in Pacifascticus leniusculus (Lin et al., 2010). We therefore hypothesized that AST1 would

advance the late-appearing second peak of BrdU-labeled cells observed in the niche following a single in-

jection of BrdU into crayfish. Indeed, following the injection of r-AST1, the gap in BrdU labeling of niche

cells observed previously was completely obliterated by the premature release of cells from the anterior

proliferation center (APC) and posterior hematopoietic tissue (HPT).

Another aim of these studies was to identify the specific type of circulating cell that becomes the neural

progenitor. Three hemocyte types have been characterized in the blood of crayfish and related decapod

crustaceans: granular, semigranular, and hyaline cells (Söderhäll, 2016). Adoptive transfer of specific hemo-

cyte classes, separated with Percoll gradients, tested which cell type is most likely to incorporate into the

niche. We find that only cells from the layer containing hyaline and semigranular hemocytes are incorpo-

rated into the niche, and these express appropriate neurotransmitters six weeks after transfer. In addition,

short-term in vitro and in vivo studies indicate that hyaline cells are the only hemocyte type that is actively in

the cell cycle and able to incorporate proliferation markers. Together, these data suggest that hyaline cells

are the most likely neural progenitor cells.

A final goal of the current studies was to identify variables that influence the integration of adoptively trans-

ferred hemocytes into the niche, in order to determine whether the replenishment of the niche population

is regulated. Adoptive transfers of EdU-labeled hemocytes from donors to naive recipients have been pre-

viously described (Benton et al., 2014); further studies showed that the incorporation rate for adoptively

transferred hemocytes into the niche can be very low (Brenneis and Beltz, 2020). We therefore asked

whether the magnitude of hemocyte incorporation into the niche varies depending on experimental con-

ditions. Using a variation of previous adoptive transfer methods, recipient crayfish were treated with sero-

tonin (5-hydroxytryptamine, 5-HT) after hemocyte transfer; 5-HT has been implicated as an attractant for
iScience 25, 103993, April 15, 2022 3
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hemocytes to the niche (Benton et al., 2011). Raising 5-HT levels increased hemocyte integration into the

niche following adoptive transfers, indicating that the low incorporation in earlier studies may have resulted

from experimental variables that can be controlled and modulated.

Overall, these data (1) confirm the immune origin of progenitor cells responsible for adult neurogenesis in

the crayfish brain, (2) identify hyaline hemocytes as the most likely neural progenitor cells, and (3) indicate

that hormonal variations (e.g., circadian, seasonal, or in response to physiological stimuli) and environ-

mental conditions that alter the composition of the hemolymph or hemocyte numbers, modulate the

rate of hemocyte incorporation into the niche.
RESULTS AND DISCUSSION

Previously published studies examined the presence or absence of labeled cells in the neurogenic niche at

intervals following a single injection of BrdU (Benton et al., 2014). These data revealed two peaks in BrdU

labeling in the niche (Figure 1D) separated by a gap when no labeled cells were observed. The timing of the

first peak was consistent with the clearing time for BrdU (�36–48 h; Benton et al., 2011), the cell cycle time of

the niche cells (�48 h), and the limited self-renewal capacity of the niche cells (Benton et al., 2013). Surpris-

ingly, however, an extended second peak in BrdU labeling was observed in the niche after the gap period.

This delayed peak has been attributed to the labeling of neural progenitors in their source tissue, followed

by their release, maturation, and incorporation into the niche. These findings prompted a number of ques-

tions; paramount among these is to confirm the source tissue of the neural progenitors. Previous experi-

ments suggested this source is the immune system (Benton et al., 2011, 2014). The goals of the present

studies were to further test the immune system’s role in the generation of neurons by identifying the spe-

cific hemocyte type that replenishes the progenitor pool and by testing whether immune system modula-

tors (i.e., AST1 and 5-HT) also influence neurogenesis.
Cellular dynamics in the immune system tissues are compared (Figure 1)

Following a single pulse of BrdU, proliferating cells were tracked in the two regions comprising the immune

system (APC and HPT; Söderhäll, 2016) (Figures 1B and 1C). The APC and more posterior HPT are contig-

uous tissues located on the dorsal side of the gut, surrounding the dorsal artery; the APC surrounds the cor

frontale (Figure 1A) adjacent to the brain, and contains a highly proliferative and largely undifferentiated

population of cells containing loose euchromatin, suggesting this may be a stem cell region. In contrast,

the posterior HPT contains four to five cell types containing dense heterochromatin, organized in repeating

lobules (Noonin et al., 2012). Our hypothesis in the current experiments was that the dynamics of BrdU la-

beling in these tissues and their response to AST1 might implicate one of these areas as the source of neu-

ral precursors in the niche.

The APC: the percentage of BrdU-labeled cells decreases exponentially

The percentage of BrdU-labeled cells in immune tissues (APC, HPT) was examined at intervals after BrdU

injection (Figures 1B and 1C), following the timing protocol used previously to examine BrdU labeling of

neural precursor cells in the niche (Figure 1D; shaded graph adapted from Benton et al., 2014). Four readily

identifiable proliferative regions in the APC were assessed in order to ensure repeatability of the analysis;

these same regions were analyzed in earlier APC studies (Chaves da Silva et al., 2013). In the current exper-

iments, these regions also serve as assays for the influence of AST1 on the APC.

In the APC, �40% of all cells were consistently labeled 1 day after BrdU injection (Figure 1B), in agreement

with previous studies (Chaves da Silva et al., 2013). An exponential decline in labeled cells (R2 = 0.99) was

then observed over the next 10 days, until the percentage of BrdU-labeled cells decreased to zero by day

14 (Figure 1B). This rapid incorporation of BrdU and precipitous decline in labeled cells suggests that the

APC contains a highly proliferative population of cells that are being quickly released into the circulation.

Cellular dynamics in the HPT contrast with cells in the APC

The posterior HPT was sampled on either side of the dorsal artery (Figure 1A). Cells in these regions display

BrdU-labeling dynamics that are distinct from the APC (Figure 1C). For the first three sampling days

following BrdU injection, the percentage of BrdU-labeled cells stabilizes between 20 and 25%, consistent

with findings in other species (Söderhäll et al., 2003). The initial degree of labeling is therefore roughly half

of what is observed in the APC, suggesting very different cell cycle times (and/or length of S phase) in these
4 iScience 25, 103993, April 15, 2022
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tissues. However, the percentage of BrdU-labeled cells falls to near zero between days 3 and 5, reaching

this point more rapidly than in the APC. Therefore, despite being anatomically connected as one tissue

(Chaves da Silva et al., 2013; Noonin et al., 2012), the cellular dynamics of the APC and HPT are very

different. To provide temporal context, the APC and HPT graphs are superimposed on the previously pub-

lished graph of BrdU labeling in the niche following a single injection of BrdU (Figure 1D; Benton et al.,

2014).

The dynamics of cell labeling with proliferation markers in the APC and HPT are therefore distinct. Many

previous studies have demonstrated the release of hemocytes from crustacean hematopoietic tissues

into the vascular system (see the review in Söderhäll, 2016), and there is currently no evidence for move-

ment of cells within or between the APC and HPT (Benton and Beltz, unpublished results). Accordingly,

the rapid decline in BrdU labeling observed in these regions is interpreted as the release of cells into

the circulation. Current research is therefore examining in detail the circulating hemocyte population,

including quantitative studies of the three different hemocyte types in P. clarkii.
AST1 alters cellular dynamics in the niche and immune system (Figures 2 and 3)

The cytokine AST1, a member of the prokineticin family, promotes the maturation and release of hemo-

cytes from hematopoietic tissues in Pacifastacus leniusculus (Söderhäll et al., 2005; Söderhäll, 2016). An in-

crease in semigranular hemocytes is primarily responsible for the large increase in total hemocyte count

(THC) following injection of the recombinant form of AST1 (r-AST1; Lin et al., 2010). Likewise, injection of

P. clarkii with r-AST1 results in a �70% increase in THC at 12 h after injection (Benton et al., 2014), although

the specific hemocyte type(s) responsible for this increase is not known.

In order to further test the relationship between the immune and nervous systems, we introduced r-AST1

along with BrdU and repeated the sampling protocol used to generate the APC, HPT, and niche graphs in

Figure 1D. These experiments tested the hypotheses that AST1 will advance the late-appearing BrdU-

labeled cells in the niche (peak B in graph 1D) owing to the premature release of cells from the hematopoi-

etic system, and that the APC and HPT will have distinct responses to AST1.

AST1 alters the arrival-time of BrdU-labeled cells in the neurogenic niche

Following a simultaneous injection of BrdU and r-AST1 on day 0, BrdU-labeled cells were quantified in the

niches of crayfish that were sacrificed daily for one week after BrdU injection and at intervals thereafter for

21 days, following the same schedule as in previous studies (Benton et al., 2014). The probability of

observing BrdU-labeled cells in the niche was then plotted for each of the sampling days (Figure 2A, red

dashed line). The actual counts of BrdU-labeled niche cells are superimposed on the probability graph

in Figure 2B.

BrdU-labeled cells are present in the niche at all sampled time points, with four distinct peaks on days 2, 4,

7 ,and 10 post-injection (peaks C–F, Figure 2A). This contrasts with the two peaks (A and B) observed in

earlier studies without AST1. We conclude that peak C represents the labeling of intrinsic cells in the niche

with BrdU (as does peak A, Figure 2A). Peak D is of special interest, as this occurs on day 4, when the initial

number of labeled niche cells was rapidly declining during the BrdU-only experiment (Benton et al., 2014)

(see overlay, Figure 2A). Whereas there was only a 10% chance of finding labeled cells in the niche on day 4

in the BrdU-only protocol, r-AST1 injections along with BrdU increased the chance of finding BrdU-labeled

cells in the niche to 50%. Previous experiments have shown that r-AST1 injection into crayfish results in

increased incorporation of BrdU by, and increased the number of, niche cells (Benton et al., 2014), indi-

cating that AST1 promotes the proliferation of these cells. Peak Dmay therefore reflect a higher rate of pro-

liferation in cells intrinsic to the niche, which is consistent with the doubling in the average number of

labeled niche cells in the histogram (Figure 2B).

Peak E appears during the ‘‘gap’’ period defined in previous BrdU-only studies (Figures 1D and 2A), as

might be predicted if AST-1 promotes the early release of BrdU-labeled cells from the immune system. Ac-

cording to our hypothesis, some of these newly released circulating cells migrate to and are incorporated

into the niche, resulting in a ‘‘premature’’ peak of BrdU-labeled cells in the niche. We also conclude that

peak F is composed of BrdU-labeled cells akin to those composing peak B (Figures 1D and 2A), but this

may be delayed because the most mature cells in the APC and/or HPT were released prematurely and

compose peak E, resulting in delayed release of additional cells from the source tissue.
iScience 25, 103993, April 15, 2022 5



Figure 2. AST1 alters the timing of appearance of proliferating cells in the niche

(A) Comparison of the % chance of finding BrdU-labeled cells in the niche after a single BrdU injection on day 0 (purple,

peaks A and B; graph adapted from Benton et al., 2014), and after simultaneous injection of BrdU plus r-AST1 on day 0 (red

dashed graph, peaks C–F). For both experiments, animals were euthanized and brains dissected on days 1–8, 10, 14, and

21. Peaks in labeling are denoted by letters and are found on days 2 and 10 for the BrdU alone injection (Peaks A and B),

and on days 2, 4, 7, and 10 for the BrdU plus r-AST1 injection (peaks C–F, indicated above each peak).

(B) The average number of BrdU-labeled cells in the niche (right Y axis) was calculated for each time point (bar graphs;

mean G SD) for the BrdU plus r-AST1 injection, and plotted with the % chance of finding a BrdU-labeled cell in the niche

(left Y axis).
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The average number of BrdU-labeled cells found in the niche at each time point is superimposed on the

niche graph (Figure 2B, right Y axis). The numbers of cells at each sampling time roughly follows the pattern

of the % chance of finding BrdU-labeled cells in the niche (left Y axis), rising and falling with the peaks, re-

inforcing the implications of these data.

Simultaneous injection of BrdU and r-AST1 therefore results in four distinct peaks in BrdU labeling (C–F) in

the niche, compared with two peaks (cells intrinsic to the niche, followed by source-labeled cells) in earlier

studies without r-AST1 (Benton et al., 2014). AST1 introduction also obliterates the gap period when no

BrdU labeling was observed in previous studies, such that BrdU-labeled cells are observed in the niche

at all time points. This is consistent with the hypothesis that AST1 treatment would advance the arrival

of the late-appearing BrdU-labeled cells in the niche (i.e., peak B in the original studies without AST1; Ben-

ton et al., 2014), owing to the premature release of cells from the immune system.

AST-1 alters cell proliferation in the APC and HPT

As expected, r-AST1 injection also influences cell proliferation in the APC and HPT (Figures 3A–3C). On day

1, BrdU-labeled cells in the APC are reduced to fewer than 20% of all APC cells (red dashed line, Figure 3B),

from >40% when only BrdU is injected (green line graph in 3B). The APC is completely depleted of BrdU

labeled cells by day 4 following r-AST1 injection, whereas BrdU labeling is not fully depleted until day 8

in the BrdU-only injection experiment. These data indicate that r-AST1 injection results in a more rapid

release of APC cells.
6 iScience 25, 103993, April 15, 2022



Figure 3. AST-1 alters cell release from the APC and HPT

After a simultaneous injection of BrdU and r-AST1 on day 0, brains, APC and HPT were dissected from groups of crayfish

on days 1–8, 10, 14, and 21 post-injection. The % chance of finding BrdU-labeled cells in the niche, as well as the % of cells

that were BrdU-labeled in the HPT and APC were determined for each time point. BrdU-labeled cells are found in the

niche on all days, with peaks on days 2, 4, 7, and 10 (peaks C–F, Figure 2A)

(A) The dynamics of proliferation in the APC and HPT (right Y axis) are overlaid on the graph of BrdU-labeled cells in the

niche (left Y axis) following a single injection of BrdU and r-AST1.

(B and C) The % BrdU-labeling in the APC (B) and HPT (C) is compared between experiments with BrdU-only (APC, green;

HPT, blue) and BrdU plus r-AST1 (red dashed lines) injections. Error bars indicate standard deviations.
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The influence of r-AST1 on the HPT is less striking, as the%BrdU labeling on day 1 after injection is similar to

the BrdU-only study (Figures 3A and 3C). However, the decline in % BrdU labeling in the HPT is more rapid

after r-AST1 injection (Figure 3C). Depletion of BrdU labeling in the HPT is similar with and without r-AST1

injection, occurring by day 5 or 6.

These studies demonstrate that altering the timeline of hemocyte release from the immune system with

r-AST1 also changes the timing of appearance of BrdU-labeled cells in the niche, consistent with other

data suggesting that the immune system replenishes the neural progenitors in the niche. Because AST1
iScience 25, 103993, April 15, 2022 7
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has the greatest influence on the APC cell population (Figure 3B), causing the release of more than half of

the BrdU-labeled cells by the first sampling point on day 1, we suggest that these cells contribute to the

niche replenishment, although a contribution from the HPT cannot be ruled out, since AST1 accelerates

the release of cells from both tissues – albeit more rapidly from the APC. According to this interpretation,

the change in the behavior of APC cells may correlate with the appearance of peak E (Figure 2).
Hyaline cells proliferate in vitro and in vivo (Figure 4)

It has been reported that circulating hemocytes in crayfish proliferate rarely (Bauchau, 1981; Söderhäll et al.,

2003; Li et al., 2021). We wanted to test this in P. clarkii, because this has important implications for these

studies. Using a simple in vitro approach, the presence of BrdU labeling in hemocytes attached to lysine-

coated glass coverslips was examined; hemocytes were withdrawn from crayfish 1 h prior to BrdU incuba-

tion, which lasted for 6 h.

All three classes of hemocytes were identified in these preparations: hyaline, semigranular, and granular

(Figure 4A). Crustacean hemocytes are generally classified based on morphological criteria (Bauchau,

1981; Söderhäll, 2016), although details of form and function vary somewhat among species. In crayfish,

the granular cells are the largest hemocytes, and are generally spherical or oval cells densely packed

with granules; these are involved in phagocytosis and the proPO-activating system (Cerenius and Söder-

häll, 2004, 2021). Semigranular cells are characterized by sparsely distributed small granules; these cells

often have an elliptical shape and bipolar processes, and participate in encapsulation. The hyaline cells,

the smallest of the three hemocyte types, contain large nuclei, minimal cytoplasm containing no or few

granules, and their contributions to immune function are least well understood. These have been proposed

to be immature or prematurely released prohemocytes (van de Braak et al., 2002; Lin and Söderhäll, 2011).

Of these cell types, hyaline cells have the highest nuclear to cytoplasmic ratio, and granular cells have the

lowest.

In our short-term in vitro experiments, nuclear BrdU labeling was evident only in the hyaline cells, which

were quite numerous, in contrast to reports in other species (e.g., Li et al., 2021). Nuclear BrdU was found

in 10–15% of hyaline cells that were identified, suggesting that this population is active in the cell cycle (Fig-

ures 4A–4C). Focal cytoplasmic labeling also was observed in granular cells (Figures 4B and 4D). Compar-

isons with published data and images (e.g., Yapici et al., 2015) indicate that the labeled regions may be

individual lysosomes or endosomes. It is not known whether these cells may be actively involved in phago-

cytosis of BrdU-labeled cells, which would result in cytoplasmic labeling of the granular cell, or perhaps

more likely, whether BrdU is passively taken up as the granular cells digest particles in the culture medium.

Regardless of the underlying mechanism, a significant proportion of the granular cells contained this punc-

tate cytoplasmic labeling.

In vivo studies of circulating hemocytes at various intervals after a single injection of BrdU into crayfish also

suggest that hyaline cells are the only hemocytes that incorporate BrdU into the nucleus (Figures 4E–4H).

Hemolymph samples taken at 6 h post-BrdU injection, the same BrdU exposure time used in the in vitro

studies, are very similar to what was observed in vitro. That is, all three hemocyte types are present, hyaline

cells are the most numerous cell type observed, and many of these have BrdU-labeled nuclei (Figures 4E

and 4G). No other hemocyte labeling is observed. In hemolymph samples taken at 7 days post-BrdU injec-

tion (Figures 4F and 4H), the same interval used for adoptive transfers of hemocytes, hyaline cells continue

to be the most numerous hemocyte type and nuclear labeling of these is frequently observed. However,

cytoplasmic labeling of granular cells was not observed in these samples, as in the in vitro (Figures 4B

and 4D) and adoptive transfer (Figures 5, 5D, 5E, 8A, and 8B) studies. Additional studies are underway

to explore this difference among our preparations. Note that some circulating hemocytes illustrated in Fig-

ure 4 may not be fully mature forms, and therefore may not show all of the typical features of the mature cell

types described above. Nevertheless, the identification of the BrdU-labeled hemocytes as hyaline cells is

unequivocal.

These studies show that circulating hemocytes in P. clarkii do proliferate and that this is not a rare event.

Second, hyaline cells appear to be the only variety of hemocyte that is active in the cell cycle, both

in vitro and in vivo, at least under our experimental conditions.
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Figure 4. Hyaline cells proliferate in vitro (Figures 4A–4D) and in vivo (6-h samples: Figures 4E and 4G; 7-day

samples: Figures 4F and 4H)

(A) Hemolymph was withdrawn from crayfish and hemocytes were attached to lysine-coated slides. All three hemocyte

types can be identified in these samples: granular (arrows); semigranular (open arrowheads); hyaline (filled arrowheads).

These hemocytes were treated with BrdU for 6 h, beginning 1 h after hemolymph was taken from the crayfish, and then

processed immunocytochemically. Only hyaline cells in these samples contain labeled nuclei (BrdU, red), although not all

hyaline cells are labeled. Many granular cells contain a small area of cytoplasmic labeling (arrow in the middle of the

frame; see also B, D).

(B) Two hyaline cells containing nuclear BrdU labeling are shown, as well as one granular cell with an area of cytoplasmic

labeling (arrow). Two unlabeled hyaline cells are also shown in the bottom right of this image.

(C and D) Higher magnification images are shown with (C) two hyaline cells containing nuclear labeling and (D) two

granular cells with a small area of cytoplasmic labeling.

(E) In vivo 6 h post-BrdU injection. Hemolymph was withdrawn from crayfish that had been injected with BrdU 6 h earlier.

Hemocytes were attached to lysine-coated slides, fixed and processed immunocytochemically. All three hemocyte types

can be identified in these samples: granular (arrows); semigranular (open arrowheads); hyaline (filled arrowheads). Only

hyaline cells in these samples contain labeled nuclei (BrdU, red), although not all hyaline cells are labeled.

(F) In vivo 7 days post-BrdU injection. Hemolymph was withdrawn from crayfish that had been injected with BrdU 7 days

earlier, and hemocytes were attached to lysine-coated slides. All three hemocyte types could be identified in these

samples, although only hyaline cell nuclei contain BrdU labeling. Examples of hyaline cells, two of which are labeled, and

semigranular cells, which are not labeled, are illustrated.

(G) In vivo 6 h post-BrdU injection. Higher magnification, showing a BrdU-labeled hyaline cell (filled arrowhead) near

unlabeled hemocytes.

(H) In vivo 7 days post-BrdU injection. Higher magnification, showing BrdU-labeled hyaline cells amidst unlabeled cells.

Scale bars: (A) 20 mm; (B–H) 10 mm.
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Figure 5. Hemocyte types are separated with Percoll gradients and adoptively transferred

(A) Hemolymph from donor crayfish containing EdU-labeled hemocytes was separated into two layers (1, 2) with Percoll

gradients (see Methods for details).

(B) Layer 1 contains hyaline (filled arrowheads) and semigranular (open arrowheads) hemocytes. The hyaline cells have a

narrow, clear rim of cytoplasm surrounding a large nucleus. Semigranular cells contain sparse granules and are often

spindle-shaped in these preparations.

(C) Layer 2 contained granular hemocytes (arrows), which are spherical cells densely packed with granules.

(D)When hemocytes from layer 2 (granular cells, arrows) were injected into recipient crayfish, these were often found near,

but never in, the niche of recipients. Characteristically, the EdU labeling observed was cytoplasmic, suggesting that EdU-

labeled donor cells took up EdU during phagocytosis of debris, or perhaps by phagocytosis of other labeled hemocytes.

(E) When cells from layer 1 (hyaline and semigranular cells) were injected into recipient crayfish, cells with EdU nuclear

labeling were observed in the niche (arrows) and were similar in size to the intrinsic niche cells. Scale bars: (B, C) 10 mm;

(D, E) 50 mm.
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Hemocyte types can be separated and adoptively transferred (Figures 5 and 6)

To further explore which hemocyte type is associated with adult neurogenesis, hemolymph was separated

using Percoll Plus gradients, yielding viable cells that could then be used directly in adoptive transfers.

However, the numbers of cells in each layer are reduced by the multiple cell transfers from the donor to

gel to the recipient. Observation of hemocytes between these transfers also suggests that the number

of viable cells decreases as the protocol progresses.

Separation of hemolymph from individual crayfish with Percoll Plus gradients resulted in two distinct bands

(Figure 5A). Each of these was gently removed with a micropipette. Cell morphology in each band was then

examined to determine whether the bands contained a relatively pure population of cells, and to identify

the cell types. These studies demonstrated that layer 1 contains hyaline and semigranular hemocytes (Fig-

ure 5B). Layer 2, the deeper (heavier) band, contains granular cells (Figure 5C).

Adoptive transfers of specific hemocyte types

The goal of these studies was to ask whether a specific hemocyte class can be associated with the

neurogenic lineage. Donor hemocytes were drawn on days 7–8 after EdU injection, around the time that

source-labeled cells are beginning to appear in the niche following a single injection of a proliferation

marker (Figure 1D), suggesting these are mature and competent to integrate into the niche (Benton

et al., 2014). Following blood collection, hemolymph was separated into specific hemocyte types with Per-

coll gradients, and each layer from the gradient was transferred into different recipients, with one recipient

receiving either layer 1or 2 cells from an individual donor crayfish.
10 iScience 25, 103993, April 15, 2022



Figure 6. Adoptively transferred hemocytes from Percoll gradient layer 1 enter the neurogenic lineage

Hemolymph from donor crayfish containing EdU-labeled hemocytes was separated into two layers with Percoll gradients.

Layer 1 cells (hyaline and semigranular hemocytes) were injected into recipient crayfish. Brains and associated niches are

shown with EdU labeling that indicates the progression of donor hemocytes through the neurogenic lineage. Scale bars:

10 mm.

(A) EdU-labeled cells are observed in the streams (arrows) and proliferation zones (arrowhead) of Cluster 10 at 7 days after

transfer of donor hemocytes from layer 1. A, Hoechst 33,342 (cyan); Ai, EdU cell labeling (red); Aii, anti-GS (blue). The GS

antibody labeled all cells in the niche, streams and proliferation zones in P. clarkii. EdU-labeled cells are also observed in

the vicinity that are not in the streams or cell cluster. The merged image (Aiii) illustrates the positions of these cells, as well

as the location of the enlarged image shown in Aiv-Avi (dotted line box). These highly magnified images show the labeled

cells (arrows) and their placement in the streams. The ‘holes’ in GS labeling (Av) are the positions of the EdU labeled cells

(Aiv), shown merged in Avi.

(B and C) Three weeks after transfer of layer 1 cells from donor crayfish, single cells (B-Bii) and pairs of cells (C-Cii) are

observed in Cluster 10. This pair of cells contains no SIFamide labeling (blue, Ci, Cii).
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Figure 6. Continued

(D) Six weeks after transfer of layer 1 cells from donor crayfish, EdU-labeled cells are frequently found in clusters (Di), and

cells in these clusters contain immunoreactivity for the neurotransmitter SIFamide (Dii, Diii). (E) In these higher

magnification images taken six weeks after layer 1 transfer to a recipient crayfish, EdU-labeled cells are observed with anti-

SIFamide labeling in the cytoplasm (arrows; Eii shows the merged image illustrating this feature).
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After adoptive transfer of layer 2 (granular) cells (n = 12 brains, 21 niches), hemocytes with EdU-labeled

nuclei are not observed in the niche, streams or cell clusters, although cells with cytoplasmic EdU labeling

are found near the niche in these preparations (Figure 5D). In contrast, after adoptive transfers of layer

1containing hyaline and semigranular hemocytes (n = 14 brains, 24 niches), EdU-labeled cells (nuclear

and/or cytoplasmic labeling) are observed in 29% of all niches in recipient crayfish; 8% contained cells

with EdU nuclear labeling that overlaps completely with Hoechst labeling and without cytoplasmic EdU

(Figure 5E). Cytoplasmically-labeled cells (see Figure 5D) likely result from phagocytic cells engulfing

EdU-labeled cells, or alternatively, from passive uptake of EdU while ingesting cellular debris during the

EdU labeling period in the donor. These were observed in samples of donor hemolymph (data not shown),

in addition to in vitro hemocyte proliferation studies (Figures 4B and 4D), suggesting that at least some of

these cells come from the donors in that condition.

Three days after transfer of layer 1 cells to recipients, EdU-labeled cells are found in the niches of recipient

crayfish (Figure 5E). One week after the transfer, EdU-labeled cells are observed primarily in the streams

and proliferation zones of cell Clusters 9 and 10 (Figure 6A). Three and six weeks after the transfer, EdU-

labeled cells are frequently observed in Clusters 9 and 10. These cells have EdU-labeled nuclei and appear

to have divided, as they tend to occur in pairs (Figures 6C and 6Cii) and groups (Figures 6D and 6E). Some of

these cells contain immunoreactivity for the transmitter SIFamide (Figures 6Dii, 6Diii, 6Ei, and 6Eii), one of

the transmitters normally expressed by many cells in Cluster 10 (Yasuda-Kamatani and Yasuda, 2006; Po-

lanska et al., 2007) and others not (Figures 6Ci and 6Cii), possibly reflecting differences in their division

and differentiation times.

Based on purely morphological criteria, results of prior in vitro studies have suggested that semigranular

hemocytes are themost likely neural progenitor cell candidates (Benton et al., 2011). The present functional

studies show that (1) incorporation into the niche is not observed after the transfer of EdU-labeled cells

from layer 2 of Percoll Plus gradients containing granular cells (Figures 5C and 5D). (2) Labeled cells

from layer 1of these gradients (containing hyaline and semigranular hemocytes) readily integrate into

the niche, and are later found in the migratory streams and brain clusters. (3) Many labeled cells in Clusters

9 and 10 that result from layer 1cell transfers express transmitter, suggesting that adoptively transferred

EdU-labeled hemocytes can generate cells with neural properties. Taken together with the finding that hy-

aline cells are the only hemocyte type that incorporates proliferation markers, these adoptive transfer find-

ings indicate that hyaline cells are the prime neural progenitor cell candidates.

Adoptive transfers of APC and HPT cells have also been attempted, with the hope that the specific tissue

source of the hemocytes might be identified. However, these cells never integrated among the niche cells

as hemocytes do, although they occasionally were found loosely attached to the edge of a niche. These

results are reminiscent of our findings with HPT cells in vitro, which also were not attracted to the niche

in a previous study (Benton et al., 2011). Our assumption at that time was that cells extracted from the

HPT would be immature and therefore not competent to be attracted to the niche. This hypothesis con-

tinues to be the most attractive interpretation of our findings with adoptive transfers of APC and HPT cells.
Serotonin regulates THC and alters adoptive transfer outcomes (Figures 7 and 8)

In the crayfish P. leniusculus, 5-HT regulates the expression of the cytokine AST1, which, in turn, regulates

hematopoiesis (Lin et al., 2010; Lin and Söderhäll, 2011; Noonin, 2018). Consistent with those findings,

r-AST1 injection results in higher THC in P. clarkii and also increases proliferation of cells in the

niche-stream lineage that leads to the production of adult-born neurons (Benton et al., 2014). In addition,

5-HT (10�9 M) increases the number of cells in the neurogenic niche without increasing the incorporation

rate of proliferation markers, suggesting that there must be an influx of cells to the niche (Benton et al.,

2011). Finally, we have demonstrated here that by increasing AST1 levels, the timing of appearance of

labeled neural progenitors in the niche can be manipulated. Taken together, these data indicate
12 iScience 25, 103993, April 15, 2022



Figure 7. 5-HT regulates THC and alters adoptive transfer outcomes

(A) Injection of 5-HT into crayfish leads to maximal THC increases by 20 min post-injection. Twenty microliters of

hemolymph was collected from crayfish prior to experimentation in order to determine a pre-injection THC. After

allowing crayfish to rest for 24 h, they were injected with saline or 5-HT and bled again at a specified time point (x axis)

following the injection to determine a post-injection THC. The % change was determined as: (post-injection THC – pre-

injection THC/pre-injection THC) * 100. Grey bars represent the average percent change in THC of animals injected with

saline, and black bars represent average % change in THC of animals injected with 5-HT. Comparisons between groups

were made with one-way ANOVA analysis followed by Tukey’s multiple comparison tests. Error bars indicate the standard

error of the mean (SEM). Asterisks indicate significant difference from saline control (independent samples t-test, 10 min,

p = 0.018; 20 min, p = 0.021). For the 5-HT group (black bars), for the four time points (10, 20, 40, and 60 min), sample size

n = 11, 9, 10, and 8 animals, respectively. For the saline group (grey bars), n = 8, 9, 9, and 8, respectively.

(B,Inset) Recipient crayfish were soaked in 5-HT for 24 h after adoptive transfer of hemocytes from donor crayfish. The total

number of niche cells increases, despite the potential immune response to the introduction of foreign cells. This effect of

5-HT has also been observed without adoptively transferred cells (Benton et al., 2011). The niches of 5-HT-treated crayfish

increase by an average of 65.5% cells, which represents a significant increase compared with the control crayfish

maintained in pond water (independent samples t-test, p = 0.001). Error bars indicate SEM; n = 11 niches per group.

(B) After the adoptive transfer of EdU-labeled donor hemocytes, recipient crayfish were soaked in pond water alone

(control) or pond water + 5-HT (10�9 M) (5-HT soak). 40% (control) and 50% (5-HT-soaked) of niches contained EdU-

labeled cells; therefore, the number of recipient niches is not substantially altered by increased levels of 5-HT. However,
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Figure 7. Continued

the numbers of donor hemocytes that are incorporated into niches increases after 5-HT incubation of recipients, and

the types of labeled cells observed are also altered. In 5-HT-treated recipients, 83% of labeled niche cells (15)

contained EdU nuclear labeling and were elliptical with no (or sparse) granules; these are similar in size and shape to

resident niche cells. In pond water controls, only one cell contained nuclear label (bars with diagonal lines) and had

these morphological features. 5-HT treatment of recipients tends to have the opposite influence on ‘‘other EdU-

labeled cells’’ (cytoplasmic labeling with or without nuclear labeling). 5-HT treatment resulted in a reduction in the

mean numbers of these ‘‘other EdU+’’ cells (black bars). t-tests comparing the data for each of these labeling types

revealed a significant difference in ‘‘EdU nuclear label’’ (p = 0.017) between the 5-HT soak and control groups, but no

statistical difference in the ‘‘other EdU + cells’’ (p = 0.68). Error bars represent SEM; n = 12 niches per group.
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overlapping roles for 5-HT and AST1 in adult neurogenesis, reinforcing the proposal that these two mole-

cules may serve as communication links between the nervous system and immune system (Beltz and Ben-

ton, 2017).

Increased 5-HT results in higher total hemocyte counts (THC)

We sought to determine if 5-HT influences THC in P. clarkii, as in P. leniusculus (Noonin, 2018). Small

hemolymph samples (30–40 mL) were collected from crayfish (n = 72) 24 h prior to any experimental manip-

ulation to obtain a baseline THC. Either crayfish saline or serotonin creatinine sulfate in saline was then in-

jected into the thoracic cavity of crayfish, to raise 5-HT levels to �5 nM (see Methods). Post-injection THCs

were then determined at intervals (10, 20, 40, and 60 min) after 5-HT injection. The % change in hemolymph

counts relative to baseline for each group of crayfish was then determined (Figure 7A). A one-way ANOVA

followed by Tukey’s HSD demonstrated that crayfish injected with 5-HT exhibited significant increases in

THC relative to saline controls. The largest increase in THC observed was 20 min after 5-HT injection. In-

dependent samples t-tests revealed that the average % change in THCs 10 and 20 min post-injection

was significantly higher than saline controls (p = 0.018 and 0.021, respectively). The increase in THC in

response to 5-HT was anticipated, since 5-HT increases the AST1 expression (Beltz and Benton, 2017; Noo-

nin, 2018). However, the very rapid response in THC and the fact that the timing of the hemocyte response

to 5-HT appears to be concentration-dependent (data not shown), suggest that there may be a direct in-

fluence of 5-HT on hemocyte release, in addition to the AST1-mediated discharge of cells (Figures 3B and

3C; Noonin, 2018; Fukumura, 2019).

5-HT increases the total number of niche cells in recipient crayfish after adoptive transfer Previous studies

have shown that in crayfish incubated in artificial pond water with added 5-HT, the neurogenic niches visibly

swell and contain increased numbers of cells (Benton et al., 2011). When crayfish that received labeled

donor blood cells were soaked in pond water and 5-HT for 24 h after the hemolymph transfer, the number

of cells in their niches (n = 11) increased by 67% compared with niches of hemolymph recipients that were

maintained in pond water alone (n = 11) (Figure 7B, inset). This difference is statistically significant (t-test,

p = 0.001) and demonstrates that despite any immune response that may be triggered by the blood cell

transfer, 5-HT increases niche size and cell numbers, as it does in crayfish that have not received adoptively

transferred cells.

5-HT increases hemocyte incorporation into the niche

Adoptive transfers of EdU-labeled hemolymph from donor crayfish have been used to test whether hemo-

cytes can serve as neural progenitors (Benton et al., 2014), and to test which hemocyte type is involved (Fig-

ures 5 and 6). However, quantitative studies have shown that the incorporation rate of donor hemocytes can

be very low (Brenneis and Beltz, 2020).

In the current experiments, the recipients of EdU-labeled donor hemolymph were treated with 5-HT, to ask

whether the outcomes of the adoptive transfers are altered. Whereas the proportions of recipient niches

containing labeled cells are similar in controls and 5-HT-treated groups, the numbers and types of labeled

cells incorporated into the niches are altered (Figure 7B). In hemocyte recipients maintained in pond water,

~40% of the niches (5 of 12 niches) contained a total of nine EdU-labeled cells; eight of which contained

cytoplasmic labeling. Only one niche contained a cell with nuclear labeling (11% of labeled cells) (Fig-

ure 7B). This low yield is reminiscent of adoptive transfer data published previously (Brenneis and Beltz,

2020). A very different situation was observed in the 5-HT-treated recipients. In total, 50% (6 of 12 niches)

of niches contained a total of 18 EdU-labeled cells. Of these, 83% (15 cells) contained exclusively EdU nu-

clear labeling; three cells had cytoplasmic labeling (Figure 7B).
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Figure 8. 5-HT increases hemocyte incorporation into the niche

(A) After 5-HT treatment of recipient crayfish following adoptive transfer of EdU-labeled hemocytes from donor crayfish,

cells containing EdU nuclear labeling (red) are found in the niche (A, Dii, Diii) and proximal stream (A, Eii, Eiii) in recipient

crayfish. Cells containing cytoplasmic EdU labeling are also seen in the vicinity of the niche in A (arrowheads above niche).

(B and C) Additional EdU-labeled cells are observed near but not in the niche, some with cytoplasmic EdU (B) and others

with nuclear EdU (C); Hoechst and EdU channels are shown separately, with the merged channel on the right. The cell

labeling in the niche (D) is illustrated with images of individual fluorescence channels (D, anti-GS; Di, Hoechst; Dii, EdU)

and the merged image (Diii). EdU-labeled cells are also observed in the proximal regions of the streams in separate and

merged images (A, Eii, Eiii). Scale bars: (A) 30 mm; (B–E) 10 mm.
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Themajor difference between these groups, therefore, is that the 5HT-treated crayfish hadmanymore EdU

nuclear-labeled cells in the niche than those in the control group (83 vs. 11% of total labeled cells; t-test,

p < 0.02) (Figure 7B). The number of niches that are receptive to transferred cells is not dramatically altered

by 5-HT, but 5-HT does influence the numbers and types of cells that the receptive niches accept, biasing

the niche toward the incorporation of cells containing nuclear labeling with EdU (Figures 7 and 8). These

cells can be visualized in the niche (Figures 8A, 8Dii, and 8Diii) and proximal streams (Figures 8A, 8Eii,

and 8Eiii). In contrast, cells with cytoplasmic EdU labeling are observed near, but not inside, the niche (Fig-

ures 8A and 8B). These experiments therefore show that the incorporation of hemocytes into the niche is

regulated by 5-HT. This finding further implies that the incorporation of hemocytes into the niche may be

controlled by many hormonal agents circulating in the hemolymph, either through their regulation of he-

mocyte type or THC (see e.g., Tong et al., 2020), or by acting on the niche itself.
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Conclusions

Several important conclusions can be drawn from these experiments. First, the dynamics of proliferation

and release of APC and HPT cells into the circulation are distinct, although these two tissues are in close-

ness, proximity and both function as part of the immune system. Whereas the data presented here allow

only for correlations between the appearance of labeled cells in the niche (Figure 1D) and the proliferation

dynamics in the hematopoietic tissues, these results also provide a foundation for comparing the influence

of AST1, which is known to promote the differentiation and release of hemocytes from the immune system.

We hypothesized that an increase in AST1 would advance the appearance of the delayed peak ‘‘B’’ of the

BrdU-only experiment (Figure 1D). Indeed, r-AST1 injection results in the appearance of BrdU-labeled cells

in the niche during the ‘‘gap’’ period identified in BrdU-only studies (Figure 1D); thus, labeled cells are

found in the niche throughout the entire sampling period (Figure 2B). These results demonstrate that

altering the release of hemocytes from the immune system also alters the timing of appearance of labeled

cells in the niche, further supporting the proposal that the immune system is responsible for replenishing

the neural progenitor population in the niche. These findings therefore indicate that the specific timing of

hemocyte incorporation into the niche is highly modifiable and prone to physiological and environmental

influences that alter AST1 levels.

Percoll gradients allowed the separation of the three hemocyte types into two distinct bands: Layer one

contains hyaline and semigranular cells, and layer 2 contains granular cells. The adoptive transfers of

each of the Percoll layers to recipient crayfish indicate that cells from layer 1, but not layer 2, are readily

incorporated into recipient niches. This finding suggests that semigranular or hyaline cells (Figure 5B)

are the most likely neural progenitor candidates. In previous studies, we proposed based solely on purely

morphological criteria that semigranular cells are the presumptive neural progenitors (Benton et al., 2011).

However, the present functional studies show that hyaline cells are the only hemocytes that are actively in

the cell cycle and therefore able to incorporate proliferation markers. This knowledge, combined with the

successful adoptive transfers of EdU-labeled Percoll layer 1 hemocyte types (hyaline and semigranular), al-

lows us to propose with confidence that hyaline cells are the prime neural progenitor cell candidates.

Whether hyaline cells are multipotent stem cells or serve only as neural progenitors remains to be tested.

Serotonergic modulation of hemocyte incorporation into recipient niches following adoptive transfers from

donor crayfish indicates a central role for this monoamine in coordinating the immune and neural re-

sponses. These findings further suggest that the replenishment of niche cells by hemocytes will vary as

the hormonal status of the crayfish fluctuates, dependent on seasonality, circadian variations, stress, and

other factors that influence 5-HT levels and the proportion and numbers of the three types of hemocytes.

Ultimately, the fact that hemocyte incorporation into the niche can be regulated by physiologically relevant

concentrations of 5-HT, and that AST1 levels modulate the timing of hemocyte release and incorporation

into the niche, provide strong evidence in favor of our hypothesis that the immune system plays a pivotal

role in supplying neural progenitors underlying adult neurogenesis in crayfish.

Limitations of the study

The current study demonstrates that the immune and nervous systems contribute in critical ways to adult

neurogenesis in an invertebrate model, the crayfish. Limitations include a lack of quantitative information

about the three hemocyte types under control conditions, and in relation to the actions of serotonin and

AST1. The blood cell lineage in crayfish also is highly debated, and a clearer appreciation of the cellular

relationships leading to the production of hyaline, semigranular, and granular cells would inform their roles

in adult neurogenesis. Finally, whether the neural progenitor cells – which we propose are hyaline cells – are

pluripotent or have a restricted fate in the production of neurons, is critical knowledge needed tomore fully

understand this system.
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I. (2010). Ancient cytokines, the role of astakines
as hematopoietic growth factors. J. Biol. Chem.
285, 28577–28586. https://doi.org/10.1074/jbc.
M110.138560.

Noonin, C. (2018). Involvement of serotonin in
crayfish hematopoiesis. Dev. Comp. Immunol. 86,
189–195. https://doi.org/10.1016/j.dci.2018.05.
006.

Noonin, C., Lin, X., Jiravanichpaisal, P., Söderhäll,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-BrdU-Alexa Fluor� 488 (BrdU

Monoclonal Antibody MoBU-1, Alexa Fluor

488)

ThermoFisher Scientific (Invitrogen) Cat #B35130; RRID: AB_2536434

Mouse anti-glutamine synthetase (GS) BD Biosciences Cat #610517; RRID: AB_2313837

Rat anti-BrdU-Alexa Fluor� 555 Abcam Cat #ab221240; RRID: AB_2893129.

Rabbit anti-SIFamide Gift from Dr. A. Yasuda (Suntory Institute for

Bioorganic Research, Osaka Japan)

Yasuda et al., 2004; Yasuda-Kamatani and

Yasuda, 2006; Polanska et al., 2007

N/A

AffiniPure goat anti-rabbit IgG (H+L) (minus x

human, mouse, rat serum proteins) conjugated

to Cy5

Jackson ImmunoResearch Laboratories Cat #111-175-144; RRID: AB_2338013

Goat anti-mouse IgG DyLight 649 Jackson ImmunoResearch Labs Cat#205-492-176; RRID: AB_2339069

Chemicals, peptides, and recombinant proteins

5-bromo-2’-deoxyuridine (BrdU) Millipore Sigma Cat #19-160

4% paraformaldehyde Fisher Scientific (EM Sciences) Cat #50-259-99

Triton X-100 Sigma-Aldrich Cat #X100

Propidium iodide ThermoFisher (InvitrogenTM) Cat #P3566

Hoechst 33342 ThermoFisher Scientific Cat #H3570

DAPI ThermoFisher Scientific Cat #62248

Trypan blue, 4% solution ThermoFisher Scientific Cat #15250061

Serotonin creatinine sulfate Millipore Sigma Cat #H7752

Fluoro-Gel EM Sciences Cat #17985-10

Recombinant-astakine 1 protein (r-AST1) Gift from Irene Söderhäll (Uppsala University,

Sweden). Method in Lin et al., 2010

N/A

Percoll Plus GE Healthcare Life Sciences (now Cytiva) Cat #17544501

Critical commercial assays

CLICK-iTTM EdU Cell Proliferation Kit for

Imaging, Alexa FluorTM 488 dye

ThermoFisher Scientific (Invitrogen) Cat #C10337

Experimental models: Organisms/strains

Procambarus clarkii (red swamp crayfish) Atchafalaya Biological Supply Co N/A

Procambarus clarkii (red swamp crayfish) Carolina Biological Supply Co. N/A

Software and algorithms

JMP Data Analysis Software SAS Institute https://www.jmp.com/en_us/software/data-

analysis-software.html

IBM SPSS Statistics IBM Corp https://www.ibm.com/analytics/spss-statistics-

software

RRID: SCR_019096
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Barbara Beltz (bbeltz@wellesley.edu).
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d No original code was generated in this study.

d No standardized datatypes were generated in this study, and therefore have not been deposited in a

public repository.

d All data and analytical methods reported in this paper will be shared by the lead contact upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact on request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Adult freshwater crayfish (Procambarus clarkii) were obtained from Atchafalaya Biological Supply Co.

(Raceland, LA 70394) and Carolina Biological Supply Co (Burlington, NC), and were maintained in the An-

imal Care Facility at Wellesley College. Crayfish were kept at room temperature in a 12:12 light:dark cycle in

aquaria containing aerated artificial pond water (double-distilled water with added trace minerals and buff-

ered using sodium bicarbonate) as well as artificial plants, PVC tubing and ceramic mugs for shelter and

habitat enrichment. Both male and female crayfish were used in all experiments, although these were

not scored independently; egg-bearing females were removed from the cohort. Previous work in

P. clarkii has found no sex-related differences in the parameters of adult neurogenesis examined in the pre-

sent study. Carapace length (CL;to the nearest millimeter) was measured as the length of the animal from

the back of the eye socket to the posterior margin of the thoracic cavity.
METHOD DETAILS

Cell proliferation studies (APC and HPT) (Figure 1)

BrdU labeling and quantification of APC and HPT cells

BrdU (Millipore Sigma) (20 mL/gm of body weight of 5 mg/mL saline; saline: 205mM NaCl, 5.4mM KCl,

34.4 mM CaCl2, 1.2 mM MgCl2, and 2.4 mM NaHCO3) was injected into the ventral hemolymph sinus of

crayfish (30-35 mm CL). All injections were done in the morning (09:00-11:00) of Day 0. At intervals between

days 1 and 21 following BrdU injection, groups of crayfish were sacrificed and APC and HPT samples were

dissected and fixed overnight at 4�C in 4% paraformaldehyde in 0.1 M phosphate buffer (PB; 20 mM

NaH2PO4, 80 mMNa2HPO4; pH 7.4). Tissues were removed from fixative, rinsed for 1.5 hours in 0.3% Triton

X-100 in 0.1 M phosphate buffer (PBTx), soaked in 2N HCl for 30 minutes, and rinsed again in PBTx for 1.5

hours. APC and HPT were incubated overnight at 4 �C in mouse anti-BrdU antibody conjugated to Alexa

Fluor� 488 (1:20 in PBTx) (ThermoFisher, B351309). All tissues were then rinsed in PBTx for 1.5 hours. Tis-

sues were treated with the nucleic acid stain propidium iodide (PI; 0.5 mM in PBTx; ThermoFisher, P3566),

rinsed several times in PB, and mounted in Fluoro-Gel (Electron Microscopy Sciences, 17985-10). Slides

were allowed to set for two days at room temperature prior to storage at 4�C.

All tissue preparations were analyzed using a Leica TCS SP5 confocal microscope. Four images were taken

on each side of the APC (see regions circled in purple in Figure 1A), and two images were taken bilaterally in

the posterior region on each side of the HPT, adjacent to the dorsal artery (regions circled in red in

Figure 1A). These regions were chosen due to their known proliferative nature and for the presence of land-

marks in the tissue (the muscles of the CF in the APC and dorsal artery in the HPT) that allow approximate

standardization of the location of these sampling sites. A 4 mm stack composed of 1.0 mm thick images was

taken at each location and rendered as a maximum projection in 2D for analysis.

After all imaging was complete, the maximized, 2D stacked images of each APC and HPT region were

transferred to a laboratory computer, all images were given a code to hide their identity, and the number

of PI-labeled cells and the number of BrdU-labeled cells were counted independently (Figure 1B and 1C).

To make these counts, a transparency was taped to the computer screen and each cell was circled by hand

and counted. To obtain a percentage of BrdU-labeled cells for each tissue region, the number of BrdU-

labeled cells was divided by the total number of PI-labeled cells for each image. For analysis, the four re-

gions sampled in each APC in one animal were averaged and counted as one ‘‘n’’; likewise, the two regions
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sampled from the HPT in one animal were averaged and each animal was counted as a single ‘‘n’’. Due to

methodological constraints, at times not all four regions of each APC and both regions of the HPT were

available for counting. Thus, some averages represent fewer than the maximum number of counts. How-

ever, given the relatively small variability in these counts, these samples were included in the data set.
AST1 injection and BrdU labeling of HPT, APC and niche cells (Figures 2 and 3)

Simultaneous AST1 and BrdU injection of crayfish

Recombinant-AST1 (r-AST1) was generated in the laboratory of Irene Söderhäll (Uppsala University, Swe-

den) using an Escherichia coli expression system, as described in Lin et al., 2010. BrdU (as above) and

r-AST1 (Trx-S tag-AST1; 0.05 mg/g animal weight) were injected simultaneously into the ventral hemolymph

sinus in the abdomen of crayfish at 09:30 on ‘Day 0’.

At various intervals between days 1 and 21 following BrdU or BrdU/r-AST-1 injection, groups of crayfish

were sacrificed, brains dissected and desheathed, and processed immunocytochemically for BrdU (as

above) and mouse anti-glutamine synthetase (BD Biosciences), followed by nucleic acid labeling with PI.

Brains were mounted, viewed and images collected using a Leica TCS SP5 confocal microscope. A niche

cell was considered BrdU-labeled if its PI-labeled nucleus also fluoresced at 488 nm (indicating BrdU incor-

poration). In addition, the cytoplasm of all niche cells labels immunocytochemically for GS. Therefore, for a

BrdU-labeled cell to be counted as ‘‘in the niche’’, it had to be GS-labeled and the cell had to be sur-

rounded by other GS-labeled cells, indicating that the cell was in the same plane as other niche cells.

For analysis, the percent chance of finding a BrdU-labeled cell in the niche was determined by dividing

the number of niches containing at least one BrdU-labeled cell by the total number of niches counted

for a single time period.
In vitro and in vivo BrdU labeling of hemocytes (Figure 4)

In vitro hemocyte labeling

Hemolymph was collected from adult crayfish (30-35 mmCL) at 8 AM using a 25 gauge 5/8’’ ice-cold needle

coated with AC buffer. Hemolymph was drawn from the dorsal sinus directly into a 1 mL syringe containing

AC buffer, to a final ratio of 1 part hemolymph:2 parts AC buffer. The syringe contents were transferred to a

sterile Eppendorf tube and gently mixed, and then left undisturbed for 30min at room temperature to allow

cells to settle to the bottom of the tube. After this rest period, supernatant was removed and discarded,

leaving 50 mL in the bottom of the tube. This hemolymph sample was then transferred onto a poly L-lysine

coated coverslip (Neuvitro Corporation, GG-12-PLL) placed in the well of a culture dish, which was then

covered; cells were allowed to adhere for 30 minutes at room temperature. The coverslip with attached

cells was then washed with three quick rinses in L-15 medium (Sigma-Aldrich, L5520), which was then re-

placed with BrdU in L-15 medium (0.5 mg/mL). The dish was then covered and placed in an incubator at

18 �C for 6 hours. The coverslip was then removed from the BrdU and placed in a glass dish. Cells were

rinsed in saline (2 x 5 min), followed by 10 min in 4% paraformaldehyde fixative. After three rinses in phos-

phate buffered saline (PBS) on a rotating platform, the coverslip was allowed to dry overnight.

The next day, the coverslip with attached cells was placed in a clean glass well dish, rinsed with PBTx

(6 x 10 min), treated for 15 minutes with 2N HCl and rinsed again in PBS (6 x 10 min). Cells were then incu-

bated overnight in rat anti-BrdU conjugated to Alexa 555 (1:100 in PBTx; Abcam, #ab221240). After PBS

rinses (8 x 5 min), the coverslip with attached cells was mounted on a slide with Fluorogel (Electron Micro-

scopy Sciences). Cells and labeling were then visualized and images collected using a Leica TCS SP5

confocal microscope.

In vivo hemocyte labeling

Adult crayfish (30-35 mmCL) were injected with the S-phasemarker BrdU (2 mg/mL; 20 mL/gm body weight)

at 8AM, and then returned to holding tanks in the Animal Care Facility. For each time point — 6 hours and

7 days post-BrdU injection — hemolymph was collected as described above for in vitro studies, to a final

ratio of 1 part hemolymph:1 part AC buffer. The contents of the syringe were then transferred to a sterile

Eppendorf tube and gently mixed. Immediately thereafter, 100 mL of the hemolymph sample was trans-

ferred onto a slide precoated with poly L-lysine. Cells were allowed to adhere for 30 minutes before being

rinsed with saline (2 x 5 min) and then fixed with 4% paraformaldehyde (1 x 10 min). After three rinses in

phosphate buffered saline (PBS), the slides were left to dry overnight.
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The next day, slides were rinsed with PBTx (6 x 10 min), treated for 15 minutes with 2N HCl and rinsed again

in PBTx. Cells were then incubated overnight in rat anti-BrdU conjugated to Alexa 555 (1:100 in PBTx; Ab-

cam, #ab221240). The next day, slides were washed with PBTx (6 x 10 min), incubated in DAPI for 2 min

(1 mg/ml in PBTx; ThermoFisher Cat #62248), and rinsed with PBS (5 x 5 min). A glass coverslip was then

mounted on each slide with FluoroGel (Electron Microscopy Sciences). Cells and labeling were visualized

and images collected using a Leica TCS SP5 confocal microscope.
Adoptive transfers of hemocytes (Figures 5, 6, 7, and 8)

Hemolymph labeling and collection

Donor crayfish (30-40 mm CL) for hemolymph were injected with EdU (100 mL of 0.1 mg/mL crayfish saline)

and returned to artificial pond water for 7-8 days. On the day of the experiment, hemolymph was collected

using a 25-gauge 5/8’’ cold needle inserted shallowly beneath the ventral abdominal membrane, to the left

or right of the abdominal artery, and allowed to bleed directly into an Eppendorf tube filled with cold AC

buffer. A 1:2 solution of hemolymph and AC buffer reduced agglutination during pipetting.

Density gradient hemocyte separations

The blood/AC buffer solution was placed on top of a continuous density gradient gel using Percoll Plus (GE

Healthcare) that had been prepared according to the method of Söderhäll and Smith, 1983. To prepare the

gels, Percoll Plus was diluted to 70% in 0.15 M NaCl solution and then centrifuged at 15,000 g (Sorvall RC

5B; 25 minutes at 4�C) to form the gradient.

One mL of blood/AC buffer solution (1:1 dilution) was gently layered onto the Percoll gradient, which was

then centrifuged at 1500 g. Layers 1 and 2 were removed separately and each was combined with 200 mL of

filtered crayfish saline, then gently pipetted to re-suspend cells. Hemocytes in each band were examined by

mounting cells on slides and viewing with a compound microscope, confirming that each band contained

distinct cell types.
Adoptive transfer of specific hemocyte types: granular and semigranular cells (Figures 5

and 6)

Hemocytes extracted from each layer on the gel were injected into separate recipient crayfish. Removal of

the Percoll Plus from separated cells was not necessary because this medium has low toxicity, osmolality,

and viscosity, and is compatible with living cells; transfers did not cause any noticeable adverse effects in

the crayfish. Recipient crayfish were sacrificed 3 days, 7 days, 3 weeks or 6 weeks after transfer of hemocytes

from each band on the Percoll gel. Brains and associated niches were processed using the Alexa 488

Click-iT� reaction cocktail and labeled immunocytochemically for GS (1:100 mouse anti-glutamine synthe-

tase, BD BioSciences, followed by anti-mouse IgGDyLight 649, Jackson Immunoresearch Labs). After stain-

ing with the nucleic acid marker Hoechst 33342 (5 mg/mL), brains were mounted with Fluorogel. Brains in

the 3- and 6-week transfers were also labeled immunocytochemically for the peptide transmitter SIFamide

using a rabbit anti-SIFamide antibody (1:5000; gift of Dr. A Yasuda, Suntory Institute for Bioorganic

Research) followed by Cy5-conjugated goat anti-rabbit IgG antibody.
Injections with 5-HT and measurement of total hemocyte counts (THC) (Figure 7A)

Total hemocyte counts (THC) and 5-HT injections

Crayfish for these studies were obtained from Carolina Biological Supply Company (Burlington, NC). Body

weight (10-20 gm; 20-35 mmCL) and sex were recorded for each crayfish. Due to large biological variability

in THC among crayfish, hemolymph was collected prior to the 5-HT injection in order to acquire a baseline

THC. After being left to rest in bins for 24 hours, animals were injected with 5-HT. Post-injection THCs were

then determined at intervals (10, 20, 40 and 60 minutes) after 5-HT injection. Percent change in hemocyte

counts relative to the baseline THC was then calculated.

For 5-HT injections, serotonin creatinine sulfate (Millipore Sigma, Cat. #H7752) dissolved in crayfish saline

was injected into the thoracic cavity of crayfish (100 ml of 50 nM serotonin creatinine sulfate). Based on data

published by Rhodes (1982) comparing crayfish blood volumes to body weight in Austropotamobius pal-

lipes, a closely related astacid crayfish, the animals used in these experiments had blood volumes ranging

from ~0.5 mL-2.5 mL. We therefore calculated that the effective concentration of 5-HT in crayfish plasma
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would be approximately 5 nM. To account for the effect of injecting 5-HT, sham control crayfish were in-

jected with 100 mL of crayfish saline.

To obtain blood samples for THC, a 25-gauge 5/8’’ ice-cold needle was inserted ventrally into the

abdomen, to the left or right of the abdominal artery. The needle was gently removed when 30-40 ml of

blood was collected in the hub of the needle. For each sample, 10 ml of the collected blood was immedi-

ately pipetted into an Eppendorf tube on ice containing 20 ml of AC buffer (1:2 dilution) in order to prevent

blood clotting. The blood/AC buffer solution (6 ml) was then mixed with 6 ml of trypan blue (1:1 dilution;

ThermoFisher) in order to label dead cells. The resulting solution was pipetted into a disposable 4-chip he-

mocytometer (Bulldog Bio, Inc.) to determine THC.
Serotonin modulation of niche cell numbers after adoptive transfer of labeled donor cells

(Figure 7B inset)

Crayfish (16-20 mm CL) were injected with blood from donors using the same protocol described in Benton

et al., 2014. After two days in artificial pond water, half of the recipient crayfish were placed in a 5-HT bath at

10-9 M in pond water for 24 hours at 18�C, and then put back in pond water. The other crayfish, which were

maintained in pond water throughout this period, served as controls. Animals were sacrificed 3 days after

the beginning of 5-HT treatment. The niche cells of recipient crayfish were labeled with Hoechst, and

counted by projecting single optical sections of a stack of images onto the monitor. Hoechst-labeled cells

were then traced onto a transparent sheet for counting (as in Benton et al., 2011).
Adoptive transfer of hemocytes and 5-HT treatment of recipients (Figures 7B and 8)

Large (40-45 mmCL) crayfish (n=12) were injected with EdU and 7-8 days later, hemolymph was drawn from

each crayfish and directly transferred from an individual donor to an individual recipient (n=12, 40-45 mm

CL). Hemolymph was collected as described above. Six of these recipients were soaked in 10-9 M serotonin

creatinine sulfate in pondwater for 24 hours on day 3 post-transfer, then returned to pond water; the other 6

recipients were maintained in pond water only (controls). Brains were dissected on day 4 after hemocyte

transfer, desheathed, and processed with the Click-iT reaction to reveal sites of EdU incorporation, pro-

cessed immunocytochemically for GS (as described above), and stained with the nucleic acid marker

Hoechst. The number of EdU+ cells in the niche (n=24) and streams was assessed. Image stacks of niches,

streams and Clusters 9 and 10 were created using a Leica TCS SP5 confocal microscope. Each niche and its

associated stream were examined for the presence of EdU+ cells. EdU-labeled cells were considered to be

in the niche if they had cytoplasmic labeling for GS and were surrounded by GS-labeled niche cells that

were not labeled with EdU. EdU+ cells were not included in niche cell counts if they were not surrounded

by other GS-labeled cells, to ensure that these were actually in the niche, rather than lying on top or

beneath.
QUANTIFICATION AND STATISTICAL ANALYSES

Statistical parameters are reported in the figure legends. Data is considered significant if p<0.05. Statistical

analyses were performed using IBM SPSS Statistics (IBM Corp.) (Figure 7A) and JMP data analysis software

(SAS Institute) (Figure 7B).
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